Skip to main content

Advertisement

Log in

Structural identifiability analysis of epidemic models based on differential equations: a tutorial-based primer

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The successful application of epidemic models hinges on our ability to estimate model parameters from limited observations reliably. An often-overlooked step before estimating model parameters consists of ensuring that the model parameters are structurally identifiable from the observed states of the system. In this tutorial-based primer, intended for a diverse audience, including students training in dynamic systems, we review and provide detailed guidance for conducting structural identifiability analysis of differential equation epidemic models based on a differential algebra approach using differential algebra for identifiability of systems (DAISY) and Mathematica (Wolfram Research). This approach aims to uncover any existing parameter correlations that preclude their estimation from the observed variables. We demonstrate this approach through examples, including tutorial videos of compartmental epidemic models previously employed to study transmission dynamics and control. We show that the lack of structural identifiability may be remedied by incorporating additional observations from different model states, assuming that the system’s initial conditions are known, using prior information to fix some parameters involved in parameter correlations, or modifying the model based on existing parameter correlations. We also underscore how the results of structural identifiability analysis can help enrich compartmental diagrams of differential-equation models by indicating the observed state variables and the results of the structural identifiability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Code 1
Code 2
Fig. 3
Fig. 4
Code 3
Fig. 5
Code 4
Fig. 6
Fig. 7
Fig. 8
Code 5
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anderson R, Fraser C, Ghani A, Donnelly C, Riley S, Ferguson N, Leung G, Lam T, Hedley A (2004) Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Phil Trans R Soc Lond B 359(1447):1091–1105

    Article  Google Scholar 

  • Anderson R, Heesterbeek H, Klinkenberg D, Hollingsworth T (2020) How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 395(10228):931–934

    Article  Google Scholar 

  • Arino J, Brauer F, van den Driessche P, Watmough J, Wu J (2006) Simple models for containment of a pandemic. J R Soc Interface 3(8):453–457

    Article  Google Scholar 

  • Banks HT, Tran HT (2009) Mathematical and experimental modeling of physical and biological processes. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Bellman R, Åström K (1970) On structural identifiability. Math Biosci 7(3–4):329–339

    Article  Google Scholar 

  • Bellu G, Saccomani M, Audoly S, D’Angiò L (2007) DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput Methods Programs Biomed 88:52–61

    Article  MATH  Google Scholar 

  • Brauer F (2006) Some simple epidemic models. Math Biosci Eng 3(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Brauer F, Castillo-Chavez C, Feng Z (2019) Mathematical models in epidemiology. Springer, Berlin

    Book  MATH  Google Scholar 

  • Chatzis M, Chatzi E, Smyth A (2015) On the observability and identifiability of nonlinear structural and mechanical systems. Struct Control Health Monit 22:574–593

    Article  Google Scholar 

  • Chis O, Banga J, Balsa-Canto E (2011) Structural identifiability of systems biology models: a critical comparison of methods. PLoS ONE 6(11):e27755

    Article  Google Scholar 

  • Chowell G, Ammon C, Hengartner N, Hyman J (2006a) Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. J Theor Biol 241:193–204

    Article  MathSciNet  MATH  Google Scholar 

  • Chowell G, Castillo-Chavez C, Fenimore P, Kribs-Zaleta C, Arriola L, Hyman J (2004) Model parameters and outbreak control for SARS. Emerg Infect Dis 10(7):1258–1263

    Article  Google Scholar 

  • Chowell G, Nishiura H, Bettencourt L (2007) Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J R Soc Interface, 4

  • Chowell G, Shim E, Brauer F, Diaz-Dueñas P, Hyman J, Castillo-Chavez C (2006b) Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: application to the 2003 outbreak in Mexico. Stat Med 25(11):1840–1857

    Article  MathSciNet  Google Scholar 

  • Cobelli C, Distefano JJ 3rd (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol - Regul Integr Comp Physiol 239:R7–R24

    Article  Google Scholar 

  • Denis-Vidal L, Joly-Blanchard G, Noiret C (2001) Some effective approaches to check the identifiability of uncontrolled nonlinear systems. Math Comput Simul 57(1–2):35–44

    Article  MathSciNet  MATH  Google Scholar 

  • Distefano J, Cobelli C (1980) On parameter and structural identifiability: nonunique observability/reconstructibility for identifiable systems, other ambiguities, and new definitions. IEEE Trans Autom Control 25(4):830–833

    Article  MATH  Google Scholar 

  • Eisenberg M, Robertson S, Tien J (2013) Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. J Theor Biol 324:84–102

    Article  MathSciNet  MATH  Google Scholar 

  • Gallo L, Frasca M, Latora V, Giovanni R (2022) Lack of practical identifiability may hamper reliable predictions in COVID-19 epidemic models. Sci Adv 8(3):eabg5234

    Article  Google Scholar 

  • Guillaume J, Jakeman J, Marsili-Libelli S, Asher M, Brunner P, Croke B, Hill M, Jakeman A, Keesman K, Razavi S et al (2019) Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose. Environ Model Softw 119:418–432

    Article  Google Scholar 

  • Gumel A, Ruan S, Day T, Watmough J, Brauer F, Van den Driessche P, Gabrielson D, Bowman C, Alexander M, Ardal S, Wu J, Sahai B (2004) Modelling strategies for controlling SARS outbreaks. Proc R Soc Lond B 271(1554):2223–2232

    Article  Google Scholar 

  • Hong H, Ovchinnikov A, Pogudin G, Yap C (2019) SIAN: software for structural identifiability analysis of ODE models. Bioinformatics 35(16):2873–2874

    Article  MATH  Google Scholar 

  • Legrand J, Grais R, Boelle P, Valleron A, Flahault A (2007) Understanding the dynamics of Ebola epidemics. Epidemiol Infect 135:610–621

    Article  Google Scholar 

  • Ljung L, Glad T (1991) Testing global identifiability for arbitrary model parameterizations. IFAC Proc Vol. 24:1085–1090

    Article  Google Scholar 

  • Ljung L, Glad T (1994) On global identifiability for arbitrary model parametrizations. Automatica 30(2):265–276

    Article  MathSciNet  MATH  Google Scholar 

  • Meshkat N, Eisenberg M, DiStefano JJ 3rd (2009) An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner bases. Math Biosci 222:61–72

    Article  MathSciNet  MATH  Google Scholar 

  • Miao H, Xia X, Perelson A, Wu H (2011) On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev 53(1):3–39

    Article  MathSciNet  MATH  Google Scholar 

  • Ogungbenro K, Aarons L (2011) Structural identifiability analysis of pharmacokinetic models using DAISY: semi-mechanistic gastric emptying models for 13C-octanoic acid. J Pharmacokinet Pharmacodyn 38:279–292

    Article  Google Scholar 

  • Piazzola C, Tamellini L, Tempone R (2021) A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology. Math Biosci 332:108514

    Article  MathSciNet  MATH  Google Scholar 

  • Pohjanpalo H (1978) System identifiability based on the power series expansion of the solution. Math Biosci 41:21–33

    Article  MathSciNet  MATH  Google Scholar 

  • Roosa K, Chowell G (2019) Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models. Theor Biol Med Model, 16(1)

  • Saccomani M, Audoly S, Bellu G, D’Angiò L (2010) Examples of testing global identifiability of biological and biomedical models with the DAISY software. Comput Biol Med 40:402–407

    Article  Google Scholar 

  • Saccomani M, Bellu G (2008) DAISY: an efficient tool to test global identifiability. Some case studies. In: 2008 16th mediterranean conference on control and automation, pp. 1723–1728. IEEE

  • Sauer T, Berry T, Ebeigbe D, Norton M, Whalen A, Schiff S (2021) Identifiability of infection model parameters early in an epidemic. SIAM J Control Optim 60(2):S27–S48

    Article  MathSciNet  MATH  Google Scholar 

  • Tuncer N, Le T (2018) Structural and practical identifiability analysis of outbreak models. Math Biosci 299:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Tuncer N, Timsina A, Nuno M, Chowell G, Martcheva M (2022) Parameter identifiability and optimal control of an SARS-CoV-2 model early in the pandemic. J Biol Dyn 16:412–438

    Article  MathSciNet  MATH  Google Scholar 

  • Vajda S, Godfrey KR, Rabitz H (1989) Similarity transformation approach to identifiability analysis of nonlinear compartmental models. Math Biosci 93(2):217–248

    Article  MathSciNet  MATH  Google Scholar 

  • Villaverde A, Barreiro A, Papachristodoulou A (2016) Structural identifiability of dynamic systems biology models. PLoS Comput Biol 12(10):e1005153

    Article  Google Scholar 

  • Walter E, Lecourtier Y (1982) Global approaches to identifiability testing for linear and nonlinear state space models. Math Comput Simul 24(6):472–482

    Article  MathSciNet  MATH  Google Scholar 

  • Yan P, Chowell G (2019) Quantitative methods for investigating infectious disease outbreaks, vol 70. Springer, Berlin

    MATH  Google Scholar 

  • Zhang S, Ponce J, Zhang Z, Lin G, Karniadakis G (2021) An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City. PLoS Comput Biol 17(9):e1009334

    Article  Google Scholar 

Download references

Acknowledgements

G.C. is partially supported from NSF Grants 2125246 and 2026797 and R01 GM 130900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Chowell.

Ethics declarations

Conflict of interest

The authors report no conflicts of interests related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Input–output equations of epidemic models

\(\underline{\hbox {Input-output equation of the model }{\hbox {M}}_2}\)

$$\begin{aligned}{} & {} (y_1^{'''})^2 y_1^{'} y_1 + (y_1^{'''})^2 y_1^2 k - y_1^{'''} (y_1^{''})^2 y_1 - y_1^{'''} y_1^{''} (y_1^{'})^2 +y_1^{'''} y_1^{''} y_1^{'} y_1 (2 \gamma - k) \nonumber \\{} & {} \quad +2 y_1^{'''} y_1^{''} y_1^2 k ( \gamma + k) - y_1^{'''} (y_1^{'})^3 ( \gamma + k) + 4 y_1^{'''} (y_1^{'})^2 y_1^2 \frac{\beta }{N} + y_1^{'''} (y_1^{'})^2 y_1 ( \gamma ^2 - 2 k^2) \nonumber \\{} & {} \quad + 8 y_1^{'''} y_1^{'} y_1^3 \frac{\beta k}{N} + y_1^{'''} y_1^{'} y_1^2 \gamma k (2 \gamma + k) + 4 y_1^{'''} y_1^4 \frac{\beta k^2}{N} \nonumber \\{} & {} \quad + y_1^{'''} y_1^3 \gamma ^2 k^2 + (y_1^{''})^3 y_1^{'} - (y_1^{''})^3 y_1 ( \gamma + k) \nonumber \\{} & {} \quad + 2 (y_1^{''})^2 (y_1^{'})^2 k - 3 (y_1^{''})^2 y_1^{'} y_1^2 \frac{\beta }{N} + (y_1^{''})^2 y_1^{'} y_1 ( \gamma ^2 - \gamma k - 2 k^2) - 3 (y_1^{''})^2 y_1^3 \frac{\beta k}{N} \nonumber \\{} & {} \quad + (y_1^{''})^2 y_1^2 k ( \gamma ^2 + 2 \gamma k + k^2) + y_1^{''} (y_1^{'})^3 ( - 2 \gamma ^2 - \gamma k + 2 k^2) + 2 y_1^{''} (y_1^{'})^2 y_1^2 \frac{\beta (3 \gamma - k)}{N} \nonumber \\{} & {} \quad + y_1^{''} (y_1^{'})^2 y_1 \frac{( \gamma ^3 - \gamma ^2 k - 3 \gamma k^2 - 2 k^3)}{N^2} + 2 y_1^{''} y_1^{'} y_1^3 \frac{\beta k (6 \gamma + k)}{N} \nonumber \\{} & {} \quad + y_1^{''} y_1^{'} y_1^2 \frac{\gamma k (2 \gamma ^2 + 2 \gamma k + k^2)}{N^2}+ 2 y_1^{''} y_1^4 \frac{\beta k^2 (3 \gamma + 2 k)}{N} \nonumber \\{} & {} \quad + y_1^{''} y_1^3 \gamma ^2 k^2 ( \gamma + k) - (y_1^{'})^5 \frac{\beta }{N} + (y_1^{'})^4 y_1 \frac{\beta ( - 4 \gamma - 3 k)}{N} \nonumber \\{} & {} \quad + (y_1^{'})^4 ( - \gamma ^3 - 2 \gamma ^2 k + k^3) + 4 (y_1^{'})^3 y_1^3 \frac{\beta ^2}{N^2} + (y_1^{'})^3 y_1^2 \frac{\beta ( \gamma ^2 - 6 \gamma k - 6 k^2)}{N} \nonumber \\{} & {} \quad + (y_1^{'})^3 y_1 \gamma k ( - 2 \gamma ^2 - 3 \gamma k - k^2) + 12 (y_1^{'})^2 y_1^4 \frac{\beta ^2 k}{N^2} + (y_1^{'})^2 y_1^3 \frac{\beta k (3 \gamma ^2 - 4 k^2)}{N} \nonumber \\{} & {} \quad -(y_1^{'})^2 y_1^2 \gamma ^2 k^2 ( \gamma + k) + 12 y_1^{'} y_1^5 \frac{\beta ^2 k^2}{N^2} \nonumber \\{} & {} \quad +y_1^{'} y_1^4 \frac{\beta \gamma k^2 (3 \gamma + 2 k)}{N} + 4 y_1^6 \frac{\beta ^2 k^3}{N^2} + y_1^5 \frac{\beta \gamma ^2 k^3}{N}=0 \end{aligned}$$
(21)

\(\underline{\hbox {Input-output equation of the model }{\hbox {M}}_3}\)

$$\begin{aligned}{} & {} (y_1^{'''})^2 y_1^{'} y_1 + (y_1^{'''})^2 y_1^2 k - y_1^{'''} (y_1^{''})^2 y_1 - y_1^{'''} y_1^{''} (y_1^{'})^2 + y_1^{'''} y_1^{''} y_1^{'} y_1 (2 \gamma - k) \nonumber \\{} & {} \quad +2 y_1^{'''} y_1^{''} y_1^2 k (\gamma + k) - y_1^{'''} (y_1^{'})^3 (\gamma + k) + 4 y_1^{'''} (y_1^{'})^2 y_1^2 \frac{( - \beta _A \rho + \beta _A + \beta _I \rho )}{N \rho } \nonumber \\{} & {} \quad +y_1^{'''} (y_1^{'})^2 y_1 (\gamma ^2 - 2 k^2) +8 y_1^{'''} y_1^{'} y_1^3 \frac{k ( - \beta _A \rho + \beta _A + \beta _I \rho )}{N \rho }+ y_1^{'''} y_1^{'} y_1^2 \gamma k (2 \gamma + k) \nonumber \\{} & {} \quad +4 y_1^{'''} y_1^4 \frac{k^2 ( - \beta _A \rho + \beta _A + \beta _I \rho )}{N \rho } +y_1^{'''} y_1^3 \gamma ^2 k^2 +(y_1^{''})^3 y_1^{'} \nonumber \\{} & {} \quad - (y_1^{''})^3 y_1 (\gamma + k) + 2 (y_1^{''})^2 (y_1^{'})^2 k \nonumber \\{} & {} \quad +3 (y_1^{''})^2 y_1^{'} y_1^2 \frac{(\beta _A \rho - \beta _A - \beta _I \rho )}{N \rho } +(y_1^{''})^2 y_1^{'} y_1 (\gamma ^2 - \gamma k - 2 k^2) \nonumber \\{} & {} \quad +3 (y_1^{''})^2 y_1^3 \frac{k (\beta _A \rho - \beta _A - \beta _I \rho )}{ N \rho } \nonumber \\{} & {} \quad +(y_1^{''})^2 y_1^2 k (\gamma ^2 + 2 \gamma k + k^2) + y_1^{''} (y_1^{'})^3( - 2 \gamma ^2 - \gamma k + 2 k^2) \end{aligned}$$
$$\begin{aligned}{} & {} \quad +2 y_1^{''} (y_1^{'})^2 y_1^2 \frac{( - 3 \beta _A \gamma \rho + 3 \beta _A \gamma + \beta _A k \rho - \beta _A k + 3 \beta _I \gamma \rho - \beta _I k \rho )}{N \rho } \nonumber \\{} & {} \quad +y_1^{''} (y_1^{'})^2 y_1 (\gamma ^3 - \gamma ^2 k - 3 \gamma k^2 - 2 k^3)\nonumber \\{} & {} \quad +2 y_1^{''} y_1^{'} y_1^3 \frac{k ( - 6 \beta _A \gamma \rho + 6 \beta _A \gamma - \beta _A k \rho + \beta _A k + 6 \beta _I \gamma \rho + \beta _I k \rho )}{N \rho } \nonumber \\{} & {} \quad +y_1^{''} y_1^{'} y_1^2 \gamma k (2 \gamma ^2 + 2 \gamma k + k^2) \nonumber \\{} & {} \quad + 2 y_1^{''} y_1^4 \frac{k^2 ( - 3 \beta _A \gamma \rho + 3 \beta _A \gamma - 2 \beta _A k \rho + 2 \beta _A k + 3 \beta _I \gamma \rho + 2 \beta _I k \rho )}{N \rho } \nonumber \\{} & {} \quad +y_1^{''} y_1^3 \gamma ^2 k^2(\gamma + k) + (y_1^{'})^5 \frac{ (\beta _A \rho - \beta _A - \beta _I \rho )}{N \rho } \nonumber \\{} & {} \quad +(y_1^{'})^4 y_1 \frac{ (4 \beta _A \gamma \rho - 4 \beta _A \gamma + 3 \beta _A k \rho - 3 \beta _A k - 4 \beta _I \gamma \rho - 3 \beta _I k \rho )}{N \rho } \nonumber \\{} & {} \quad +( y_1^{'})^4 ( - \gamma ^3 - 2 \gamma ^2 k + k^3) \nonumber \\{} & {} \quad + 4 (y_1^{'})^3 y_1^3 \frac{(\beta _A^2 \rho ^2 - 2 \beta _A^2 \rho + \beta _A^2 - 2 \beta _A \beta _I \rho ^2 + 2 \beta _A \beta _I \rho + \beta _I^2 \rho ^2)}{N^2 \rho ^2} \nonumber \\{} & {} \quad +(y_1^{'})^3 y_1^2 \frac{ ( - \beta _A \gamma ^2 \rho + \beta _A \gamma ^2 + 6 \beta _A \gamma k \rho - 6 \beta _A \gamma k + 6 \beta _A k^2 \rho - 6 \beta _A k^2 + \beta _I \gamma ^2 \rho - 6 \beta _I \gamma k \rho - 6 \beta _I k^2 \rho )}{N \rho } \nonumber \\{} & {} \quad +(y_1^{'})^3 y_1 \gamma k ( - 2 \gamma ^2 - 3 \gamma k - k^2) \nonumber \\{} & {} \quad + 12 (y_1^{'})^2 y_1^4 \frac{k (\beta _A^2 \rho ^2 - 2 \beta _A^2 \rho + \beta _A^2 - 2 \beta _A \beta _I \rho ^2 + 2 \beta _A \beta _I \rho + \beta _I^2 \rho ^2)}{N^2 \rho ^2} \nonumber \\{} & {} \quad +(y_1^{'})^2 y_1^3 \frac{k ( - 3 \beta _A \gamma ^2 \rho + 3 \beta _A \gamma ^2 + 4 \beta _A k^2 \rho - 4 \beta _A k^2 + 3 \beta _I \gamma ^2 \rho - 4 \beta _I k^2 \rho )}{N \rho }\nonumber \\{} & {} \quad - (y_1^{'})^2 y_1^2 \gamma ^2 k^2 (\gamma + k) \nonumber \\{} & {} \quad +12 y_1^{'} y_1^5 \frac{k^2 (\beta _A^2 \rho ^2 - 2 \beta _A^2 \rho + \beta _A^2 - 2 \beta _A \beta _I \rho ^2 + 2 \beta _A \beta _I \rho + \beta _I^2 \rho ^2)}{N^2 \rho ^2} \nonumber \\{} & {} \quad +y_1^{'} y_1^4 \frac{ \gamma k^2 ( - 3 \beta _A \gamma \rho + 3 \beta _A \gamma - 2 \beta _A k \rho + 2 \beta _A k + 3 \beta _I \gamma \rho + 2 \beta _I k \rho )}{N \rho } \nonumber \\{} & {} \quad +4 y_1^6 \frac{ k^3 (\beta _A^2 \rho ^2 - 2 \beta _A^2 \rho + \beta _A^2 - 2 \beta _A \beta _I \rho ^2 + 2 \beta _A \beta _I \rho + \beta _I^2 \rho ^2)}{N^2 \rho ^2} \nonumber \\{} & {} \quad + y_1^5 \frac{ \gamma ^2 k^3 ( - \beta _A \rho + \beta _A + \beta _I \rho )}{N \rho } \end{aligned}$$
(22)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowell, G., Dahal, S., Liyanage, Y.R. et al. Structural identifiability analysis of epidemic models based on differential equations: a tutorial-based primer. J. Math. Biol. 87, 79 (2023). https://doi.org/10.1007/s00285-023-02007-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-02007-2

Keywords

Mathematics Subject Classification

Navigation