Skip to main content
Log in

A stochastic parabolic model of MEMS driven by fractional Brownian motion

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we study a stochastic parabolic problem that emerges in the modeling and control of an electrically actuated MEMS (micro-electro-mechanical system) device. The dynamics under consideration are driven by an one dimensional fractional Brownian motion with Hurst index \(H>1/2\). We derive conditions under which the resulting SPDE has a global in time solution, and we provide analytic estimates for certain statistics of interest, such as quenching times and the corresponding quenching probabilities. Our results demonstrate the non-trivial impact of the fractional noise on the dynamics of the system. Given the significance of MEMS devices in biomedical applications, such as drug delivery and diagnostics, our results provide valuable insights into the reliability of these devices in the presence of positively correlated noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Algamili AS, Khir M, Dennis JO et al (2021) A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res Lett 16:16

  • Allen JJ (2005) Micro electro mechanical system design. CRC Press, Cambridge

    Google Scholar 

  • Alvarez A, Lopez-Mimbela J Alfredo, Privault N (2015) Blowup estimates for a family of semilinear SPDES with time-dependent coefficients. Differ Equ Appl 7(2):201–219

    MathSciNet  MATH  Google Scholar 

  • Amann H (1976) Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev 18:620–709

    MathSciNet  MATH  Google Scholar 

  • Chirkov C, Grumezescu A (2022) Microelectromechanical systems (MEMS) for biomedical applications. Micromachines 13:164

    Google Scholar 

  • Da Prato G, Zabczyk J (2014) Stochastic equations in infinite dimensions, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Dozzi M, Kolkovska ET, Lopez-Mimbela JA (2020) Global and non-global solutions of a fractional reaction–diffusion equation perturbed by a fractional noise. Stoch Anal Appl 38(6):959–978

    MathSciNet  MATH  Google Scholar 

  • Dozzi M, Kolkovska ET, Lopez-Mimbela JA (2014) Finite-time blow up and existence of global positive solutions of a semi-linear SPDE, modern stochastics and applications. Springer Optim Appl 90, Springer, Cham, pp 95–108

  • Dozzi M, López-Mimbela JA (2010) Finite-time blowup and existence of global positive solutions of a semi-linear SPDE. Stoch Proc Appl 120:767–776

    MathSciNet  MATH  Google Scholar 

  • Dozzi M, Kolkovska ET, López-Mimbela JA (2020) Global and non-global solutions of a fractional reaction–diffusion equation perturbed by a fractional noise. Stoch Anal Appl 38(6):959–978

    MathSciNet  MATH  Google Scholar 

  • Dozzi M, Kolkovska ET, López-Mimbela JA (2014) Finite-time blowup and existence of global positive solutions of a semi-linear stochastic partial differential equation with fractional noise, modern stochastics and applications. Springer Optim. Appl. vol 90. Springer, Cham, pp 95–108

  • Drosinou O, Kavallaris NI, Nikolopoulos CV (2021) A study of a nonlocal problem with Robin boundary conditions arising from technology. Math Methods Appl Sci 44(13):10084–10120

    MathSciNet  MATH  Google Scholar 

  • Drosinou O, Kavallaris NI, Nikolopoulos CV (2022) Impacts of noise on the quenching of some models arising in MEMS technology. Euro J Appl Math. https://doi.org/10.1017/S0956792522000262

    Article  Google Scholar 

  • Dung NT (2019) The probability of finite-time blowup of a semi-linear SPDE with fractional noise. Stat Probab Lett 149:86–92

    MathSciNet  MATH  Google Scholar 

  • Duong GK, Zaag H (2019) Profile of a touch-down solution to a nonlocal MEMS model. Math Mod Meth Appl Sci 29(7):1279–1348

    MathSciNet  MATH  Google Scholar 

  • Esposito P, Ghoussoub N, Guo Y (2010) Mathematical analysis of partial differential equations modeling electrostatic MEMS, Courant Lecture Notes in Mathematics, vol 20. Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  • Evans LC (2010) Partial differential equations, 2nd edn. American Mathematical Society, New York

    MATH  Google Scholar 

  • Garrido-Atienza MJ, Maslowski B, Snupárková J (2016) Semilinear stochastic equations with bilinear fractional noise. Discrete Contin Dyn Syst B 21(9):3075–3094. https://doi.org/10.3934/dcdsb.2016088

    Article  MathSciNet  MATH  Google Scholar 

  • Flores G, Mercado G, Pelesko JA, Smyth N (2006/07) Analysis of the dynamics and touchdown in a model of electrostatic MEMS SIAM J Appl Math 67:434–446

  • Flores G (2014) Dynamics of a damped wave equation arising from MEMS. SIAM J Appl Math 74:1025–1035

    MathSciNet  MATH  Google Scholar 

  • Friedman A (1983) Partial differential equations of parabolic type. Prentice-Hall Inc, Hoboken

    Google Scholar 

  • Friedman A (2006) Stochastic differential equations and applications. Dover Publications, New York

    MATH  Google Scholar 

  • Geddes AL (1972) Electrodes and the measurement of bioelectric events. Wiley-Interscience, Hoboken

    Google Scholar 

  • Ghazali FAM, Hasan MN, Rehman T, Nafea M, Ali MSM, Takahata K (2020) MEMS actuators for biomedical applications: a review. J Micromech Microeng 15:073001

    Google Scholar 

  • Ghoussoub N, Guo Y (2008) On the partial differential equations of electrostatic MEMS devices II: dynamic case. Nonlinear Differ Eqn Appl 15:115–145

    MathSciNet  MATH  Google Scholar 

  • Guo Y (2010) Dynamical solutions of singular wave equations modeling electrostatic MEMS. SIAM J Appl Dyn Syst 9:1135–1163

    MathSciNet  MATH  Google Scholar 

  • Guo J-S, Hu B, Wang C-J (2009) A nonlocal quenching problem arising in micro-electro mechanical systems. Q Appl Math 67:725–734

    MathSciNet  MATH  Google Scholar 

  • Guo J-S, Kavallaris NI (2012) On a nonlocal parabolic problem arising in electrostatic MEMS control. Discrete Contin Dyn Syst 32(5):1723–1746

    MathSciNet  MATH  Google Scholar 

  • Guo J-S, Kavallaris NI, Wang C-J, Yu C-Y (2020) The bifurcation diagram of a micro-electro mechanical system with Robin boundary condition. Hiroshima Math J 52(2022):311–320

  • Gyöngy I, Rovira C (2000) On \(L^p\)-solutions of semilinear stochastic partial differential equations. Stoch Process Appl 90(1):83–108

    MATH  Google Scholar 

  • Karatzas I, Shreve S (1991) Brownian motion and stochastic calculus. Graduate Texts in Mathematics, vol 113, 2nd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  • Kavallaris NI (2015) Explosive solutions of a stochastic non-local reaction–diffusion equation arising in shear band formation. Math Methods Appl Sci 38(16):3564–3574

    MathSciNet  MATH  Google Scholar 

  • Kavallaris NI (2018) Quenching solutions of a stochastic parabolic problem arising in electrostatic MEMS control. Math Methods Appl Sci 41(3):1074–1082

    MathSciNet  MATH  Google Scholar 

  • Kavallaris NI, Miyasita T, Suzuki T (2008) Touchdown and related problems in electrostatic MEMS device equation. Nonlinear Differ Eqn Appl 15:363–385

    MathSciNet  MATH  Google Scholar 

  • Kavallaris NI, Lacey AA, Nikolopoulos CV, Tzanetis DE (2011) A hyperbolic non-local problem modelling MEMS technology. Rocky Mountain J Math 41:505–534

    MathSciNet  MATH  Google Scholar 

  • Kavallaris NI, Lacey AA, Nikolopoulos CV, Tzanetis DE (2015) On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete Contin Dyn Syst 35:1009–1037

    MathSciNet  MATH  Google Scholar 

  • Kavallaris NI, Lacey AA, Nikolopoulos CV (2016) On the quenching of a nonlocal parabolic problem arising in electrostatic MEMS control. Nonlinear Anal 138:189–206

    MathSciNet  MATH  Google Scholar 

  • Kavallaris NI, Suzuki T (2018) Non-local partial differential equations for engineering and biology: mathematical modeling and analysis. Mathematics for Industry, vol 31. Springer Nature, New York

    MATH  Google Scholar 

  • Kavallaris NI, Yan Y (2020) Finite-time blow-up of a non-local stochastic parabolic problem. Stoch Proc Appl 130(9):5605–5635. https://doi.org/10.1016/j.spa.2020.04.002

    Article  MathSciNet  MATH  Google Scholar 

  • López-Mimbela J, Pérez (2015) Global and nonglobal solutions of a system of nonautonomous semilinear equations with ultracontractive Lévy generators. J Math Anal Appl 423:720–733

    MathSciNet  MATH  Google Scholar 

  • Lord GJ, Powell CE, Shardlow T (2014) An introduction to computational stochastic PDEs. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Maslowski B, Nualart D (2003) Evolution equations driven by a fractional Brownian motion. J Funct Anal 202:277–305

    MathSciNet  MATH  Google Scholar 

  • Mishura Y (2008) Stochastic calculus for fractional Brownian motion and related processes, Springer Lecture Notes in Mathematics, 1929. Springer, Berlin

    Google Scholar 

  • Miyasita T (2017) On a nonlocal biharmonic MEMS equation with the Navier boundary condition. Sci Math Jpn 80(2):189–208

    MathSciNet  MATH  Google Scholar 

  • Miyasita T (2017) Convergence of solutions of a nonlocal biharmonic MEMS equation with the fringing field. J Math Anal Appl 454(1):265–284

    MathSciNet  MATH  Google Scholar 

  • Miyasita T (2015) Global existence of radial solutions of a hyperbolic MEMS equation with nonlocal term. Differ Equ Appl 7(2):169–186

    MathSciNet  MATH  Google Scholar 

  • Nualart D, Vuillermot P (2006) Variational solutions for partial differential equations driven by a fractional noise. J Funct Anal 232:390–454

    MathSciNet  MATH  Google Scholar 

  • Nuxoll E (2013) BioMEMS in drug delivery. Adv Drug Deliv Rev 65:1611–1625

    Google Scholar 

  • Orey S (1972) Growth rate of certain Gaussian processes. In: Proceedings of the sixth berkeley symposium on mathematical statistics and probability, vol II: probability theory. University of California Press, Berkeley, pp 443–451

  • Pazy A (1983) Semigroups of linear operators and applications to partial differential equations Applied Mathematical Sciences, vol 44. Springer-Verlag, New York

    MATH  Google Scholar 

  • Pelesko JA, Bernstein DH (2002) Modeling MEMS and NEMS. Chapman Hall and CRC Press, Boca Raton

    MATH  Google Scholar 

  • Pelesko JA, Triolo AA (2001) Nonlocal problems in MEMS device control. J Eng Math 41:345–366

    MathSciNet  MATH  Google Scholar 

  • Sanz-Solé M, Vuillermot P-A (2003) Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations. Ann Inst H Poincaré Probab Statist 39(4):703–742

    MathSciNet  MATH  Google Scholar 

  • Schaefer H (1974) Banach lattices and positive operators. Springer, Berlin

    MATH  Google Scholar 

  • Yager P, Edwards T, Fu E et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    Google Scholar 

  • Younis M (2011) MEMS linear and nonlinear statics and dynamics. Springer, New York

    Google Scholar 

  • Zähle M (2001) Integration with respect to fractal functions and stochastic calculus II. Math Nachr 225:145–183

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of A.M. is partially supported by a FONDECYT Regular grant (award no. 1221220). The authors would like to thank the referees for their valuable comments, which led to significant improvements of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anastasios Matzavinos or Nikos I. Kavallaris.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drosinou, O., Nikolopoulos, C.V., Matzavinos, A. et al. A stochastic parabolic model of MEMS driven by fractional Brownian motion. J. Math. Biol. 86, 73 (2023). https://doi.org/10.1007/s00285-023-01897-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-01897-6

Keywords

Mathematics Subject Classification

Navigation