Skip to main content
Log in

Relating Eulerian and Lagrangian spatial models for vector-host disease dynamics through a fundamental matrix

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We explore the relationship between Eulerian and Lagrangian approaches for modeling movement in vector-borne diseases for discrete space. In the Eulerian approach we account for the movement of hosts explicitly through movement rates captured by a graph Laplacian matrix L. In the Lagrangian approach we only account for the proportion of time that individuals spend in foreign patches through a mixing matrix P. We establish a relationship between an Eulerian model and a Lagrangian model for the hosts in terms of the matrices L and P. We say that the two modeling frameworks are consistent if for a given matrix P, the matrix L can be chosen so that the residence times of the matrix P and the matrix L match. We find a sufficient condition for consistency, and examine disease quantities such as the final outbreak size and basic reproduction number in both the consistent and inconsistent cases. In the special case of a two-patch model, we observe how similar values for the basic reproduction number and final outbreak size can occur even in the inconsistent case. However, there are scenarios where the final sizes in both approaches can significantly differ by means of the relationship we propose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo MA, Prosper O, Ruktanonchai N, Caughlin T, Martcheva M, Osenberg CW, Smith DL (2015) Spatial Heterogeneity, Host Movement and Mosquito-Borne Disease Transmission. PLoS One, 6(10):

  • Aggarwal CC (2014) Data classification: algorithms and applications. CRC press

  • Allen LJS, Bolker BM, Lou Y, Nevai AL (2007) Asymptotic profiles of the steady states for an SIS epidemic patch model. SIAM Journal on Applied Mathematics 67(5):1283–1309

    Article  MathSciNet  MATH  Google Scholar 

  • Arino J, Davis JR, Hartley D, Jordan R, Miller JM, van Den Driessche P (2005) A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology 22(2):129–142

    Article  MATH  Google Scholar 

  • Arino J, van den Driessche P (2003) A multi-city epidemic model. Mathematical Population Studies 10(3):175–193

    Article  MathSciNet  MATH  Google Scholar 

  • Arino J, van den Driessche P (2006) Disease Spread in Metapopulations. Fields Institute Communications 48(2006):1–12

    MathSciNet  MATH  Google Scholar 

  • Bengtsson L, Lu X, Thorson A, Garfield R, Von Schreeb J (2011) Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Medicine, 8(8):

  • Benzi M, Fika P, Mitrouli M (2019) Graphs with absorption: Numerical methods for the absorption inverse and the computation of centrality measures. Linear Algebra and its Applications 574:123–152

    Article  MathSciNet  MATH  Google Scholar 

  • Bergsman LD, Hyman JM, Manore CA (2016) A mathematical model for the spread of West Nile virus in migratory and resident birds. Mathematical Biosciences & Engineering 13(2):401–424

    Article  MathSciNet  MATH  Google Scholar 

  • Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences, volume 9. SIAM

  • Bichara D, Castillo-Chavez C (2016) Vector-borne diseases models with residence times-A Lagrangian perspective. Mathematical Biosciences 281:128–138

    Article  MathSciNet  MATH  Google Scholar 

  • Bomblies A (2014) Agent-based modeling of malaria vectors: the importance of spatial simulation. Parasites and Vectors 308(7):426–435

  • Byrne CL (2014) A First Course in Optimization. Chapman and Hall/CRC

  • Childs DZ, Boots M (2009) The interaction of seasonal forcing and immunity and the resonance dynamics of malaria. Journal of the Royal Society Interface 7(43):309–319

    Article  Google Scholar 

  • Chung FRK, Graham FC (1997) Spectral Graph Theory. American Mathematical Soc

  • Cosner C (2015) Models for the effects of host movement in vector-borne disease systems. Mathematical Biosciences 270:192–197

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner C, Beier JC, Cantrell RS, Impoinvil D, Kapitanski L, Potts MD, Troyo A, Ruan S (2009) The effects of human movement on the persistence of vector-borne diseases. Journal of Theoretical Biology 258(4):550–560

  • Dobrow RP (2016) Introduction to Stochastic Processes with R. John Wiley & Sons

  • Dye C, Hasibeder G (1986) Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Transactions of the Royal Society of Tropical Medicine and Hygiene 80(1):69–77

    Article  Google Scholar 

  • Espana G, Hogea C, Guignard A, Guignard A, Bosch Q, Morrison A, Smith DL, Scott TW, Schmidt A, Perkins A (2019) Biased efficacy estimates in phase-iii dengue vaccine trials due to heterogeneous exposure and differential detectability of primary infections across trial arms. PLoS One, 14(1):

  • Gaff HD, Gross LJ (2007) Modeling tick-borne disease: a metapopulation model. Bulletin of Mathematical Biology 69(1):265–288

    Article  MathSciNet  MATH  Google Scholar 

  • Grunbaum D, Okubo A (1994) Modelling social animal aggregations. Lecture Notes in Biomathematics 100:296–325

    Article  MathSciNet  MATH  Google Scholar 

  • Gueron S, Levin SA, Rubenstein DI (1996) The dynamics of herds: from individuals to aggregations. Journal of Theoretical Biology 182(1):85–98

    Article  Google Scholar 

  • Hasibeder G, Dye C (1988) Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theoretical Population Biology 33(1):31–53

    Article  MathSciNet  MATH  Google Scholar 

  • Honório NA, Silva WC, Leite PJ, Gonçalves JM, Lounibos LP, Lourenço-de Oliveira R (2003) Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz 98(2):191–198

    Article  Google Scholar 

  • Hsieh YH, van den Driessche P, Wang L (2007) Impact of travel between patches for spatial spread of disease. Bulletin of Mathematical Biology 69(4):1355–1375

    Article  MathSciNet  MATH  Google Scholar 

  • Iggidr A, Koiller J, Penna MLF, Sallet G, Silva MA, Souza MO (2017) Vector borne diseases on an urban environment: the effects of heterogeneity and human circulation. Ecological Complexity 30:76–90

    Article  Google Scholar 

  • Jacobsen KA, Tien JH (2018) A generalized inverse for graphs with absorption. Linear Algebra and its Applications 537:118–147

    Article  MathSciNet  MATH  Google Scholar 

  • Jindal A, Rao S (2017) Agent-Based Modeling and Simulation Mosquito-Borne Disease Transmission. AAMAS ’17 Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp 426–435

  • Jovanovic M, Krstic M (2012) Stochastically perturbed vector-borne disease models with direct transmission. Applied Mathematical Modeling 36(11):5214–5228

    Article  MathSciNet  MATH  Google Scholar 

  • Krause E (2005) Fluid Mechanics I. Springer

  • Lee S, Castillo-Chavez C (2015) The role of residence times in two-patch dengue transmission dynamics and optimal strategies. Journal of Theoretical Biology 374:152–164

    Article  MathSciNet  MATH  Google Scholar 

  • Lessler J, Edmunds WJ, Halloran ME, Hollingsworth TD, Lloyd AL (2015) Seven challenges for model-driven data collection in experimental and observational studies. Epidemics 10:78–82

    Article  Google Scholar 

  • Lewis M, Rencławowic J, van den Driessche P (2006) Traveling Waves and Spread Rates for a West Nile Virus Model. Bulletin of Mathematical Biology 68(1):3–23

    Article  MathSciNet  MATH  Google Scholar 

  • Liu R, Shuai J, Wu J, Zhu H (2006) Modeling spatial spread of West Nile virus and impact of directional dispersal of birds. Mathematical Biosciences and Engineering 3(1):145

    Article  MathSciNet  MATH  Google Scholar 

  • Martcheva M (2015) An introduction to mathematical epidemiology, vol 61. Springer

  • Ng AY, Jordan MI, Weiss Y (2002) On Spectral Clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp 849–856

  • Ochoa J, Osorio L (2006) Epidemiology of urban malaria in Quibdo. Choco. Biomedica 26(2):278–285

    Article  Google Scholar 

  • O’Reilly KM, Lowe R, Edmunds WJ, Mayaud P, Kucharski A, Eggo RM, Funk S, Bhatia D, Khan K, Kraemer MUG et al (2018) Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Medicine 16(1):180

    Article  Google Scholar 

  • Pindolia DK, Garcia AJ, Wesoloski A, Smith DL, Buckee CO, Noor AM, Snow RW, Tatem AJ (2012) Human Movement Data for malaria control and elimination strategic planning. Malaria Journal, 205(11)

  • Reiner RC Jr, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JRC, Bisanzio D et al (2013) A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of The Royal Society Interface 10(81):20120921

    Article  Google Scholar 

  • Rodríguez DJ, Torres-Sorando L (2001) Models of infectious diseases in spatially heterogeneous environments. Bulletin of Mathematical Biology 63(3):547–571

    Article  MATH  Google Scholar 

  • Ross R (1916) An Application of the Theory of Probabilities to the Study of a priori Pathometry.Part I. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character 92(638):204–230

    MATH  Google Scholar 

  • Ruktanonchai NW, DeLeenheer P, Tatem AJ, Alegana VA, Caughlin TT, Erbach-Schoenberg E.zu, Lourenço C, Ruktanonchai CW, Smith DL (2016) Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data. PLoS Computational Biology 12(4):e1004846

    Article  Google Scholar 

  • Service MW, M. W. Service (1997) Mosquito (Diptera: Culicidae) dispersal–the long and short of it. Journal of Medical Entomology 34(6):579–588

    Article  Google Scholar 

  • Shuai Z, van den Driessche P (2013) Global Stability of Infectious Disease Models Using Lyapunov Functions. SIAM Journal on Applied Mathematics 73:1513–1532

    Article  MathSciNet  MATH  Google Scholar 

  • Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE (2012) Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathogens 8(4):e1002588

    Article  Google Scholar 

  • Smith DL, McKenzie FE (2004) Statics and dynamics of malaria infection in Anopheles mosquitoes. Malaria Journal 3(1):13

    Article  Google Scholar 

  • Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Soldan VP, Kochel TJ, Kitron U, Elder JP, Scott TW (2009) The role of human movement in the transmission of vector-borne pathogens. PLoS Neglected Tropical Diseases 3(7):e481

    Article  Google Scholar 

  • Tatem A, Smith DL (2010) International population movements and regional Plasmodium falciparum malaria elimination strategies. PNAS 27(107):12222–12227

    Article  Google Scholar 

  • Tavare S (1979) A note on finite homogeneous continuous-time Markov chains. Biometrics, pp 831–834

  • Thomson M. C, Connor S. J, Quiñones M. L, Jawara M, Todd J, Greenwood B. M. (1995) . Movement of Anopheles gambiae s.l. malaria vectors between villages in The Gambia. Medical and Veterinary Entomology 9(4):413–419

    Article  Google Scholar 

  • Tien JH, Shuai Z, Eisenberg MC, van den Driessche P (2015) Disease invasion on community networks with environmental pathogen movement. Journal of Mathematical Biology 70(5):1065–1092

    Article  MathSciNet  MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180(1–2):29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, Kochel TJ, Scott TW, Kitron U (2009) Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. International Journal of Health Geographics 8(1):68

    Article  Google Scholar 

  • Von Luxburg U (2007) A Tutorial on Spectral Clustering. Statistics and Computing 17(4):395–416

    Article  MathSciNet  Google Scholar 

  • Wanduku D, Ladde GS (2012) Global properties of a two-scale network stochastic delayed human epidemic dynamic model. Nonlinear Analysis: Real World Applications 13(2):794–816

    Article  MathSciNet  MATH  Google Scholar 

  • Wesolowski A, Eagle N, Tatem A, Smith D, Noor A, Snow RW, Buckee CO (2012) Quantifying the impact of human mobility on malaria. Science 338(6104):267–270

    Article  Google Scholar 

  • Wesolowski A, Qureshi T, Boni MF, Sundsøy PR, Johansson MA, Rasheed SB, Engø-Monsen K, Buckee CO (2015) Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences 112(38):11887–11892

    Article  Google Scholar 

  • Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JLK, Ndhlovu PD, Quinnell RJ et al (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proceedings of the National Academy of Sciences 94(1):338–342

    Article  Google Scholar 

  • Zhang Q, Sun K, Chinazzi M, Piontti AP, Dean NE, Rojas DP, Merler S, Mistry D, Poletti P, Rossi L et al (2017) Spread of Zika virus in the Americas. Proceedings of the National Academy of Sciences 114(22):E4334–E4343

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chris Cosner for feedback on an early version of this manuscript. This work was supported by the National Science Foundation (DMS 1814737, DMS 1440386), and the Fullbright International Fellow Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Vargas Bernal.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Basic reproduction number

In this section of the Appendix we use the next generation matrix approach (van den Driessche and Watmough 2002) to derive the expressions for the basic reproduction numbers (7) and (12) of systems (3) and (8) respectively.

We first compute the next generation matrix \(\left( F^{{\text {lag}}}\right) \left( V^{{\text {lag}}}\right) ^{-1}\) of the Lagrangian system. Let us consider the equations

$$\begin{aligned} \dot{I_i}&= \sum _{j=1}^n \beta _j p_{ji}\frac{S_i}{N_i}I_{v,j} - \left( \gamma _i^{{\text {lag}}} + \mu _i^{{\text {lag}}}\right) I_i \nonumber \\ \dot{I}_{v,i}&= \beta _{v,i} \frac{\sum _{j=1}^n p_{ij}I_j}{\sum _{j=1}^np_{ij}N_j} S_{v,i} \nonumber \\&\qquad + \sum _{j=1}^n m_{ij}^v I_{v,j} - \sum _{j=1}^n m_{ji}^v I_{v,i} - \mu _{v,i} I_{v,i} \end{aligned}$$
(35)

corresponding to the infectious compartments of system (3). From (35) we define the function \(\mathcal {F}^{{\text {lag}}}: \mathbb {R}^{2n} \rightarrow \mathbb {R}^{2n}\) by

$$\begin{aligned} \mathcal {F}_i^{{\text {lag}}}(I_1,\ldots ,I_n,I_{v,1},\ldots ,I_{v,n}):= \sum _{j=1}^n \beta _j p_{ji}\frac{S_i}{N_i}I_{v,j}\,, \end{aligned}$$

for \(i=1,\ldots ,n\), and

$$\begin{aligned} \mathcal {F}_i^{{\text {lag}}}(I_1,\ldots ,I_n,I_{v,1},\ldots ,I_{v,n}) := \beta _{v,i} \frac{\sum _{j=1}^n p_{ij}I_j}{\sum _{j=1}^np_{ij}N_j} S_{v,i} \,, \end{aligned}$$

for \(i=n+1, \ldots ,2n\). The DFE of the Lagrangian systems is determined by \(\left( S_i^{{\text {lag}}}\right) ^* = \left( N_i ^{{\text {lag}}}\right) ^*\) and \(\left( S_{v,i}^{{\text {lag}}}\right) ^* = \left( N_{v,i}^{{\text {lag}}}\right) ^*\) defined by (4). We then define the Jacobian matrix

$$\begin{aligned}F^{{\text {lag}}} := \left. \partial \mathcal {F}^{{\text {lag}}} / \partial (I_1,\ldots , I_n, I_{v,1}, \ldots , I_{v,n})\right| _{DFE}\,.\end{aligned}$$

We have that \(\left. \left( \partial \mathcal {F}_i^{{\text {lag}}} / \partial I_{v,j}\right) \right| _{DFE} = \beta _j p_{ji}\), so the upper-right block of \(F^{{\text {lag}}}\) is \(P^{{\text {T}}} D_{\beta }\), where \(D_{\beta }:= {\text {diag}}\{\beta _i\}\). We also have that \(\left. \left( \partial \mathcal {F}_{n+i}^{{\text {lag}}} / \partial I_j\right) \right| _{DFE} = \beta _{v,i} \left( N_{v,i}^*/\hat{N_i}^*\right) p_{ij} \), so the lower-left block of \(F^{{\text {lag}}}\) is \(D_{\beta _v}^{{\text {lag}}} P\), where \(\hat{N_i}^*:= \sum _{j=1}^n p_{ij} \left( N_j^{{\text {lag}}}\right) ^*\) and \(D_{\beta _v}^{{\text {lag}}} := {\text {diag}}\left\{ \beta _{v,i} N_{v,i}^*/\hat{N_i}^* \right\} \). Therefore, we have

$$\begin{aligned} F^{{\text {lag}}} = \begin{pmatrix} 0 &{} P^{{\text {T}}} D_{\beta } \\ D_{\beta _v}^{{\text {lag}}}P &{} 0 \end{pmatrix}. \end{aligned}$$

Similarly, we define the function \(\mathcal {V}^{{\text {lag}}}: \mathbb {R}^{2n} \rightarrow \mathbb {R}^{2n}\) by

$$\begin{aligned} \mathcal {V}_i^{{\text {lag}}} := \left( \gamma _i^{{\text {lag}}} + \mu _i^{{\text {lag}}}\right) I_i \,, \end{aligned}$$

for \(i = 1,\ldots ,n\), and

$$\begin{aligned} \mathcal {V}_i^{{\text {lag}}} := - \sum _{j=1}^n m_{ij}^v I_{v,j} + \sum _{j=1}^n m_{ji}^v I_{v,i} + \mu _{v,i} I_{v,i}\,, \end{aligned}$$

for \(i = n+1,\ldots , 2n\). We also define the Jacobian matrix

$$\begin{aligned} V^{{\text {lag}}} := \left. \partial \mathcal {V}^{{\text {lag}}}/ \partial (I_1.\ldots ,I_n, I_{v,1},\ldots , I_{v,n})\right| _{DFE}\,.\end{aligned}$$

If \(L_v\) is the graph Laplacian of the vector movement (with adjacency matrix \(M^{v} = \left( m_{ij}^v\right) _{i,j\le n}\), see (2)) and \(D_\delta ^{{\text {lag}}}:= {\text {diag}}\left\{ \gamma _i^{{\text {lag}}}+\mu _i^{{\text {lag}}}\right\} \), then the upper-left block of \(V^{{\text {lag}}}\) is \(D_\delta ^{{\text {lag}}}\) and the lower-right block of \(V^{{\text {lag}}}\) is \(G_v = L_v + D_{\delta _v}\). Therefore,

$$\begin{aligned} V^{{\text {lag}}} = \begin{pmatrix} D_\delta ^{{\text {lag}}} &{} 0 \\ 0 &{} G_v \end{pmatrix}. \end{aligned}$$

Consequently,

$$\begin{aligned} \left( F^{{\text {lag}}}\right) \left( V^{{\text {lag}}}\right) ^{-1} = \begin{pmatrix} 0 &{} P^{{\text {T}}}D_{\beta }G_v^{-1} \\ D_{\beta _v}^{{\text {lag}}}P \left( D_\delta ^{{\text {lag}}}\right) ^{-1} &{} 0 \end{pmatrix} \end{aligned}$$

and

$$\begin{aligned} (\mathcal {R}_0^{{\text {lag}}})^2 = \rho \left( P^{{\text {T}}}D_{\beta }G_v^{-1}D_{\beta _v}^{{\text {lag}}}P \left( D_\delta ^{{\text {lag}}}\right) ^{-1}\right) \,. \end{aligned}$$

We now compute the next generation matrix \(\left( F^{{\text {eul}}}\right) \left( V^{{\text {eul}}}\right) ^{-1}\) of system (8). The equations of the infectious compartments of system (8) are

$$\begin{aligned} \dot{I_i}&= \beta _i \frac{S_i}{N_i}I_{v,i} + \sum _{j=1}^n m_{ij}^{{\text {I}}} I_{j} - \sum _{j=1}^n m_{ji}^{{\text {I}}} I_{i} - \left( \gamma _i^{{\text {eul}}} + \mu _i^{{\text {eul}}}\right) I_i \nonumber \\ \dot{I_{v,i}}&= \beta _{v,i} \frac{I_i}{N_i} S_{v,i} + \sum _{j=1}^n m_{ij}^v I_{v,j} - \sum _{j=1}^n m_{ji}^v I_{v,i} - \mu _{v,i} I_{v,i}\, . \end{aligned}$$
(36)

From the equations in (36) we define the function

$$\begin{aligned}\mathcal {F}^{{\text {eul}}}(I_1,\ldots , I_n, I_{v,1},\ldots ,I_{v,n}):= \beta _i \frac{S_i}{N_i}I_{v,i}\,,\end{aligned}$$

for \(i=1,\ldots , n\), and

$$\begin{aligned}\mathcal {F}^{{\text {eul}}}(I_1,\ldots , I_n, I_{v,1},\ldots ,I_{v,n}) = \beta _{v,i} \frac{I_i}{N_i} S_{v,i}\,, \end{aligned}$$

for \(i=n+1,\ldots , 2n\).

Using the DFE (9) of system (8), we have that \(\left. \left( \partial \mathcal {F}_i^{{\text {eul}}} / \partial I_{v,j}\right) \right| _{DFE} = \beta _i \) and \(\left. \left( \partial \mathcal {F}_{n+i}^{{\text {eul}}} / \partial \mathcal {F}_{j}^{{\text {eul}}}\right) \right| _{DFE} = \beta _{v,i} N_{v,i}^*/\left( N_i^{{\text {eul}}}\right) ^* \,.\) Therefore, if

$$\begin{aligned} F ^{{\text {eul}}}:= \left. \partial \mathcal {F}^{{\text {eul}}} /\partial (I_1,\ldots , I_n, I_{v,1},\ldots , I_{v,n})\right| _{DFE}\,,\end{aligned}$$

we then have

$$\begin{aligned} F^{{\text {eul}}} = \begin{pmatrix} 0 &{} D_\beta \\ D_{\beta _v}^{{\text {eul}}} &{} 0 \end{pmatrix} \, , \end{aligned}$$

where \(D_{\beta }:= {\text {diag}}\{\beta _i\}\) and \(D_{\beta _v}^{{\text {eul}}} := {\text {diag}}\left\{ \beta _{v,i} N_{v,i}^*/\left( N_i^{{\text {eul}}}\right) ^* \right\} \). Similarly, we define the function

$$\begin{aligned}\mathcal {V}^{{\text {eul}}}(I_1,\ldots , I_n, I_{v,1},\ldots , I_{v,n}) := - \sum _{j=1}^n m_{ij}^{{\text {I}}} I_{j} + \sum _{j=1}^n m_{ji}^{{\text {I}}} I_{i} + \left( \gamma _i^{{\text {eul}}} + \mu _i^{{\text {eul}}}\right) I_i \,, \end{aligned}$$

for \(i = 1,\ldots ,n\), and

$$\begin{aligned} \mathcal {V}^{{\text {eul}}}(I_1,\ldots , I_n, I_{v,1},\ldots , I_{v,n}) := - \sum _{j=1}^n m_{ij}^v I_{v,j} + \sum _{j=1}^n m_{ji}^v I_{v,i} + \mu _{v,i} I_{v,i}\,,\end{aligned}$$

for \(i = n+1,\ldots , 2n\). Therefore, if

$$\begin{aligned}V^{{\text {eul}}}:= \left. \partial \mathcal {V}^{{\text {eul}}} / \partial (I_1,\ldots ,I_n,I_{v,1}\ldots , I_{v,n})\right| _{DFE}\,,\end{aligned}$$

we then have

$$\begin{aligned} V^{{\text {eul}}} = \begin{pmatrix} G &{} 0\\ 0 &{} G_v \end{pmatrix}\, , \end{aligned}$$
(37)

where \(G := L^{{\text {I}}} + D_{\delta }^{{\text {eul}}}\), \(L^{{\text {I}}}\) is the graph Laplacian of the host movement [with adjacency matrix \(M^{{\text {I}}} = (m_{ij}^{{\text {I}}})_{i,j\le n}\), see (2)], \(D_\delta ^{{\text {eul}}}:= {\text {diag}}\{\gamma _i^{{\text {eul}}}+\mu _i^{{\text {eul}}}\}\), and \(G_v = L_v + D_{\delta _v}\). In consequence,

$$\begin{aligned} \left( F^{{\text {eul}}}\right) \left( V^{{\text {eul}}}\right) ^{-1} = \begin{pmatrix} 0 &{} D_\beta G_v^{-1}\\ D_{\beta _v}^{{\text {eul}}}G^{-1} &{}0 \end{pmatrix}\end{aligned}$$

and

$$\begin{aligned} \left( \mathcal {R}_0^{{\text {eul}}}\right) ^2=\rho \left( D_\beta G_v^{-1}D_{\beta _v}^{{\text {eul}}}G^{-1}\right) . \end{aligned}$$

1.2 Comparison of basic reproduction numbers

In this section we prove Proposition 2 of Section 4.2. Let \(\beta _{v,1} = \beta _{v,2}\), \(N_v^* := N_{v,1}^*=N_{v,2}^*\), \(\left( N^{{\text {eul}}}\right) ^* := \left( N_1^{{\text {eul}}}\right) ^* = \left( N_2^{{\text {eul}}}\right) ^*\), and \(\beta _v = \beta _{v,1} N_{v,1}^*/\left( N_1^{{\text {eul}}}\right) ^* = \beta _{v,2} N_{v,2}^*/\left( N_2^{{\text {eul}}}\right) ^*\). Define \(\left( N_1^{{\text {lag}}}\right) ^*\) and \(\left( N_2^{{\text {lag}}}\right) ^*\) such that \(\left( N_1^{{\text {eul}}}\right) ^*= p_{11}\left( N_1^{{\text {lag}}}\right) ^* + p_{12}\left( N_2^{{\text {lag}}}\right) ^*\) and \(\left( N_2^{{\text {eul}}}\right) ^* = p_{21}\left( N_1^{{\text {lag}}}\right) ^* + p_{22}\left( N_2^{{\text {lag}}}\right) ^*\). Hence A8 holds, and \(\delta = \delta _1^{{\text {eul}}} = \delta _2^{{\text {eul}}}\), so we also get \(\delta = \delta _1^{{\text {lag}}} = \delta _2^{{\text {lag}}}\) by A9. Let \(D_\beta = \beta I\), \(D_{\beta _v} = \beta _v I\), \(D_\delta ^{{\text {eul}}} = D_\delta ^{{\text {lag}}} = D_\delta := \delta I\), \(D_{\delta _v} =\delta _v I\), \(L_v = m_v \begin{pmatrix} 1 &{} -1\\ -1 &{} 1\end{pmatrix}, P = \begin{pmatrix} 1-p_{21} &{} p_{12} \\ p_{21} &{} 1-p_{12} \end{pmatrix}\).

We fix all the parameters except \(p_{12}\) (we obtain analogous and symmetric results if we fix \(p_{21}\)). From (7) and (12), we obtain that \(\left( \mathcal {R}_{0}^{{\text {lag}}}\right) ^2 = \rho \left( P^{{\text {T}}}D_{\beta }G_v^{-1}D_{\beta _v}P \left( D_\delta \right) ^{-1}\right) \) and \( \left( \mathcal {R}_{0}^{{\text {eul}}}\right) ^2=\rho \left( D_\beta G_v^{-1}D_{\beta _v}P(D_\delta \right) ^{-1}) \). Therefore, if we define \(\mathcal {M}:=D_{\beta }G_v^{-1}D_{\beta _v}P \left( D_\delta ^{{\text {lag}}}\right) ^{-1}\), we get

$$\begin{aligned} \left( \mathcal {R}_{0}^{{\text {lag}}}\right) ^2=\rho (P^{{\text {T}}}\mathcal {M}) \quad \text {and} \quad \left( \mathcal {R}_{0}^{{\text {eul}}}\right) ^2 = \rho (\mathcal {M})\,. \end{aligned}$$
(38)

The following is the statement of the proposition.

Proposition 2

Assume A1–A10 and suppose that \(D_\beta = \beta I\), \(D_{\beta _v} = \beta _v I\), \(D_\delta ^{{\text {eul}}} = D_\delta ^{{\text {lag}}} = D_\delta := \delta I\), \(D_{\delta _v} =\delta _v I\) and \(m_{12}^v = m_{21}^v = m_v\). Define \(\mathcal {M}:=D_{\beta }G_v^{-1}D_{\beta _v}P \left( D_\delta ^{{\text {lag}}}\right) ^{-1}\) and fix \(p_{21}\) in the interval (0, 1/2). Then \(\rho (P^{{\text {T}}}M)\) is a function of \(p_{12}\) where \(0<p_{12}<1/2\) and we have that:

  1. a)

    \(\rho (\mathcal {M}) = (\beta \beta _v)/(\delta \delta _v)\) is constant on \(0<p_{12}<1/2\).

  2. b)

    \(\rho (P^{t}\mathcal {M})\) is decreasing on \((0,p_{21})\), increasing on \((p_{21},1/2)\) and attains one absolute minimum over (0, 1/2) with value \((\beta \beta _v)/(\delta \delta _v)\) at \(p_{12}=p_{21}\).

  3. c)

    In addition, we have the inequality

    $$\begin{aligned} \rho (P^{{\text {T}}}\mathcal {M})-\rho (\mathcal {M})&\le \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)}|p_{12}-p_{21}|(1-p_{12}-p_{21})\delta _v\nonumber \\&\le \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)}\max \left\{ p_{21}(1-p_{21})\delta _v,(1/2-p_{21})^2\delta _v\right\} \nonumber \\&\le \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)}\frac{\delta _v}{4} \, . \end{aligned}$$
    (39)

Proof

We have that

$$\begin{aligned} \mathcal {M}= & {} D_{\beta }G_v^{-1}D_{\beta _v}P \left( D_\delta ^{{\text {lag}}}\right) ^{-1} \\= & {} \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)} \begin{pmatrix} m_v + (1-p_{21})\delta _v &{} m_v + p_{12}\delta _v \\ m_v + p_{21}\delta _v &{} m_v + (1-p_{12})\delta _v\end{pmatrix} \, ,\end{aligned}$$

so the eigenvalues of \(\mathcal {M}\) in this case are

$$\begin{aligned} \frac{\beta \beta _v}{\delta \delta _v} \quad \text {and}\quad \frac{\beta \beta _v}{\delta \delta _v} \frac{(1-p_{12}-p_{21})\delta _v}{2m_v+\delta _v}.\end{aligned}$$

In consequence, we get \(\rho (\mathcal {M}) = (\beta \beta _v)/(\delta \delta _v)\). We can also get \(\rho (P^{{\text {T}}}\mathcal {M})\) explicitly by

$$\begin{aligned} \rho (P^{{\text {T}}}\mathcal {M}) = \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)}\left[ m_v + \delta _v - \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v + \right. \nonumber \\ \left. \sqrt{\left[ m_v + \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v\right] ^2 + \left[ (p_{12}-p_{21})(1-p_{12}-p_{21})\delta _v\right] ^2} \right] \, . \end{aligned}$$
(40)

From this equation, it follows that when \(p_{12}=p_{21}\), we get

$$\begin{aligned} \rho (P^{{\text {T}}}\mathcal {M})= \frac{\beta \beta _v}{\delta \delta _v} = \rho (\mathcal {M})\, . \end{aligned}$$

Moreover, \( \partial \rho (P^{{\text {T}}}\mathcal {M})/\partial p_{12} = \kappa \beta \beta _v/\left[ \delta \delta _v (2m_v + \delta _v)\right] \), where

$$\begin{aligned} \kappa = 2p_{12}-1 + \frac{m_v(1-2p_{21}) + \delta _v \left[ 2p_{12}(1-p_{12})(1-2p_{12}) + (p_{12}-p_{21})\left( 2p_{12}(1-p_{12}-p_{21})+p_{12}+p_{21}\right) \right] }{\sqrt{\left[ m_v + \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v\right] ^2 + \left[ (p_{12}-p_{21})(1-p_{12}-p_{21})\delta _v\right] ^2}}\,. \end{aligned}$$
(41)

In particular, if \(p_{12}=p_{21}\), then

$$\begin{aligned}\frac{\partial \rho (P^{{\text {T}}}\mathcal {M})}{\partial p_{12}}= 0 \, .\end{aligned}$$

Assume that \(p_{12} > p_{21}\). Define

$$\begin{aligned} \alpha&:= \sqrt{\left[ m_v + \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v\right] ^2 + \left[ (p_{12}-p_{21})(1-p_{12}-p_{21})\delta _v\right] ^2} \\&\le \left[ m_v + \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v\right] + \left[ (p_{12}-p_{21})(1-p_{12}-p_{21})\delta _v\right] \, , \end{aligned}$$

and

$$\begin{aligned}\eta:= & {} m_v(1-2p_{21}) + \delta _v \left[ 2p_{12}(1-p_{12})(1-2p_{12}) + (p_{12}-p_{21})\right. \\&\times \left. \left( 2p_{12}(1-p_{12}-p_{21})+p_{12}+p_{21}\right) \right] \,.\end{aligned}$$

We then have that

$$\begin{aligned} \frac{\partial \rho (P^{{\text {T}}}\mathcal {M})}{\partial p_{12}}= \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)} \left[ 2p_{12}-1 + \frac{\eta }{\alpha }\right] \end{aligned}$$

and

$$\begin{aligned} (2p_{12}-1)\alpha +\eta&\ge (2p_{12}-1)\left[ m_v + \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v \right. \\&\quad \left. + (p_{12}-p_{21})(1-p_{12}-p_{21})\delta _v\right] + \eta \\&= 2(p_{12}-p_{21})\left[ m_v + \left( (p_{12}-1)^2 + p_{12}^2\right) \delta _v \right] > 0 \, . \end{aligned}$$

Therefore, \(p_{12} > p_{21}\) implies that

$$\begin{aligned}\frac{\partial \rho (P^{{\text {T}}}\mathcal {M})}{\partial p_{12}}= \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)} \frac{(2p_{12}-1)\alpha + \eta }{\alpha } >0 \,. \end{aligned}$$

Now, let us assume that \(p_{12} <p_{21}\). We then have that

$$\begin{aligned} \alpha \ge m_v + \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v \end{aligned}$$

and

$$\begin{aligned} (2p_{12}-1)\alpha +\eta&\le (2p_{12}-1)\left[ m_v + \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v\right] + \eta \\&=-(p_{21}-p_{12})(m_v + \delta _v ( 1 + (p_{21}-p_{12})(1-2p_{12}) ) )< 0\, . \end{aligned}$$

Therefore, \(p_{12} < p_{21}\) implies that

$$\begin{aligned}\frac{\partial \rho (P^{{\text {T}}}\mathcal {M})}{\partial p_{12}}= \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)} \frac{(2p_{12}-1)\alpha + \eta }{\alpha } <0 \, . \end{aligned}$$

Using that \(\alpha \le \left[ m_v + \left( p_{12}(1-p_{12})+p_{21}(1-p_{21})\right) \delta _v\right] + |p_{12}-p_{21}|(1-p_{12}-p_{21})\delta _v \), we get

$$\begin{aligned} \rho (P^{{\text {T}}}\mathcal {M})-\rho (\mathcal {M})&\le \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)}|p_{12}-p_{21}|(1-p_{12}-p_{21})\delta _v\\&\le \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)}\max \left\{ p_{21}(1-p_{21})\delta _v,(1/2-p_{21})^2\delta _v\right\} \\&\le \frac{\beta \beta _v}{\delta \delta _v (2m_v + \delta _v)}\frac{\delta _v}{4} \, . \end{aligned}$$

\(\square \)

Let us try to get some intuition for the inequality \({\mathcal {R}}_0^{lag} \ge {\mathcal {R}}_0^{eul}\) in the previous proposition. Suppose that \(p_{21} < p_{12}\) and all the other parameters are assumed to be as in Proposition 2. Assume that the systems (3) and (8) are at the DFE and suppose we introduce the same number of infectious hosts in both patches, say \(I_h = I_{h,1} = I_{h,2}\). From the last equation in (3) of the Lagrangian system and A3.1, the rates at which vectors get infected in patches 1 and 2 are

$$\begin{aligned} \beta _{v,1} \frac{p_{11} I_{h,1} + p_{12} I_{h,2}}{ p_{11}\left( N_1^{{\text {lag}}}\right) ^* + p_{12}\left( N_2^{{\text {lag}}}\right) ^*} N_{v,1}^* = \beta _{v} I_h (1+p_{12}-p_{21})\end{aligned}$$

and

$$\begin{aligned} \beta _{v,2} \frac{p_{21} I_{h,1} + p_{22} I_{h,2}}{ p_{21}\left( N_1^{{\text {lag}}}\right) ^* + p_{22}\left( N_2^{{\text {lag}}}\right) ^*} N_{v,2}^* = \beta _{v} I_h(1+p_{21}-p_{12})\end{aligned}$$

respectively. Since \(p_{12}>p_{21}\), the vector infection rate in patch 1 is greater than in patch 2 (because \(1+p_{12}-p_{21}> 1 > 1+p_{21}-p_{12}\)). Therefore, over a period \(\Delta t\), the number of infected vectors at patch 1, which is approximately \(\Delta I_{v,1}^{{\text {lag}}}:= \beta _{v} I_h (1+p_{12}-p_{21})\Delta t\), would be larger than the amount of infected vectors at patch 2, which is approximately \(\Delta I_{v,2}^{{\text {lag}}}:= \beta _{v} I_h (1+p_{21}-p_{12}) \Delta t\). From the second equation in (3), the amount of new host infections in patches 1 and 2 caused by the new infected vectors in DFE would be

$$\begin{aligned} \Delta I_{h,1}^{{\text {lag}}} := \beta _1 p_{11}\left( \Delta I_{v,1}^{{\text {lag}}}\right) + \beta _2 p_{21}\left( \Delta I_{v,2}^{{\text {lag}}}\right) = \beta \left( p_{11}\left( \Delta I_{v,1}^{{\text {lag}}}\right) + p_{21}\left( \Delta I_{v,2}^{{\text {lag}}}\right) \right) \end{aligned}$$

and

$$\begin{aligned} \Delta I_{h,2}^{{\text {lag}}} := \beta _1 p_{12}\left( \Delta I_{v,1}^{{\text {lag}}}\right) + \beta _2 p_{22}\left( \Delta I_{v,2}^{{\text {lag}}}\right) =\beta \left( p_{12}\left( \Delta I_{v,1}^{{\text {lag}}}\right) + p_{22}\left( \Delta I_{v,2}^{{\text {lag}}}\right) \right) \end{aligned}$$

respectively. Therefore, the total amount of new infected hosts would be

$$\begin{aligned} \Delta I_h^{{\text {lag}}}:= \Delta I_{h,1}^{{\text {lag}}}+\Delta I_{h,2}^{{\text {lag}}} = \beta \left( \Delta I_{v,1}^{{\text {lag}}} + \Delta I_{v,2}^{{\text {lag}}} \right) +\beta (p_{12}-p_{21})\left( \Delta I_{v,1}^{{\text {lag}}}-\Delta I_{v,2}^{{\text {lag}}}\right) \,. \end{aligned}$$
(42)

On the other hand, from the last equation in (8) of the Eulerian system, the rates at which vectors get infected in patches 1 and 2 are

$$\begin{aligned} \beta _{v,1} \frac{I_{h,1}}{\left( N_1^{{\text {eul}}}\right) ^*} N_{v,1}^* = \beta _{v} I_h \quad \text {and}\quad \beta _{v,2} \frac{I_{h,2}}{\left( N_2^{{\text {eul}}}\right) ^*} N_{v,2}^* = \beta _{v} I_h\end{aligned}$$

respectively. Therefore, over a period \(\Delta t\), the amounts of new infected vectors are \(\Delta I_{v,1}^{{\text {eul}}} = \Delta I_{v,2}^{{\text {eul}}} = \beta _v I_h \Delta t\). Notice that

$$\begin{aligned} \Delta I_{v,1}^{{\text {lag}}} + \Delta I_{v,2}^{{\text {lag}}} = 2 \beta _{v} I_h \Delta t = \Delta I_{v,1}^{{\text {eul}}} + \Delta I_{v,2}^{{\text {eul}}}\,. \end{aligned}$$

From the second equation in (8) of the Eulerian system, the total amount of new infected hosts is

$$\begin{aligned} \Delta I_{h}^{{\text {eul}}} = \beta (\Delta I_{v,1}^{{\text {eul}}} + \Delta I_{v,2}^{{\text {eul}}}) = \beta (\Delta I_{v,1}^{{\text {lag}}} + \Delta I_{v,2}^{{\text {lag}}}) \, . \end{aligned}$$
(43)

Since \(p_{12}>p_{21}\) and \(\Delta I_{v,1}^{{\text {lag}}} > \Delta I_{v,2}^{{\text {lag}}}\), we get that the term \(\beta (p_{12}-p_{21})\left( \Delta I_{v,1}^{{\text {lag}}}-\Delta I_{v,2}^{{\text {lag}}}\right) \) in (42) is positive, and then using (43), we have that \(\Delta I_h^{{\text {lag}}} > \Delta I_h^{{\text {eul}}}\), which corresponds to \({\mathcal {R}}_0^{{\text {lag}}} \ge {\mathcal {R}}_0^{{\text {eul}}}\). Note that this implicitly relies upon the fact that the removal rates, the rates \(\beta _{v,i}\) and the rates \(\beta _i\) are the same across patches. As we observed in Figure 5, imposing different removal rates, for instance, can lead to \({\mathcal {R}}_0^{{\text {eul}}} > {\mathcal {R}}_0^{{\text {lag}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas Bernal, E., Saucedo, O. & Tien, J.H. Relating Eulerian and Lagrangian spatial models for vector-host disease dynamics through a fundamental matrix. J. Math. Biol. 84, 57 (2022). https://doi.org/10.1007/s00285-022-01761-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-022-01761-z

Keywords

Mathematics Subject Classification

Navigation