Skip to main content
Log in

A simultaneous blow-up problem arising in tumor modeling

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Although macrophages are part of the human immune system, it has been remarkably observed in laboratory experiments that decreasing its number can slow down the tumor progression. We analyze through a recently mathematical model proposed in the literature, necessary conditions for aggregation of tumor cells and macrophages. In order to do so, we prove the possibility of having blow-up in finite time. Next, we study if the aggregation of macrophages can occur when having a low density of tumor cells, and vice versa. With this purpose, we consider the problem of analyzing the existence or not of a simultaneous blow-up. We achieve this goal thanks to a novel process that allows us to compare the entropy functional associated with the density of each population, which turns out to be also a method to find enough conditions for having a simultaneous blow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubin JP (1963) Un théoreme de compacité. CR Acad Sci Paris 256(24):5042–5044

    MATH  Google Scholar 

  • Benguria R, Brézis H, Lieb EH (1981) The Thomas–Fermi–von Weizsacker theory of atoms and molecules. Commun Math Phys 79(2):167–180

    Article  MathSciNet  Google Scholar 

  • Blanchet A, Carrillo JA, Masmoudi N (2008) Infinite time aggregation for the critical Patlak–Keller–Segel model in R2. Commun Pure Appl Math 61(10):1449–1481

    Article  Google Scholar 

  • Blanchet A, Dolbeault J, Perthame B (2006) Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron J Differ Equ 44:1–32

    MathSciNet  MATH  Google Scholar 

  • Calvez V (2007) Mathematical models and analysis for the collective motion of cells. Ph.D. thesis, Department of Mathematics, University of Paris 6 and Ecole Normale Superieure, Paris

  • Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848

    Article  Google Scholar 

  • Carlen E, Loss M (1992) Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality ons\(^{n}\). Geom Funct Anal GAFA 2(1):90–104

    Article  MathSciNet  Google Scholar 

  • Conca C, Espejo E, Vilches K (2011) Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in \({\mathbb{R}}^{2}\). Eur J Appl Math. https://doi.org/10.1017/S0956792511000258

    Article  MATH  Google Scholar 

  • Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3(12):921

    Article  Google Scholar 

  • Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    Article  Google Scholar 

  • Corrias L, Perthame B (2008) Asymptotic decay for the solutions of the parabolic-parabolic Keller–Segel chemotaxis system in critical spaces. Math Comput Modell 47(7):755–764

    Article  MathSciNet  Google Scholar 

  • Espejo E, Vilches K, Conca C (2013) Sharp condition for blow-up and global existence in a two species chemotactic Keller–Segel system in \({\mathbb{R}}^{2}\). Eur J Appl Math 24:297–313

    Article  Google Scholar 

  • Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362

    Article  Google Scholar 

  • Fernández GE, Mischler S (2016) Uniqueness and long time asymptotic for the Keller–Segel equation: the parabolic–elliptic case. Arch Ration Mech Anal 220(3):1159–1194

    Article  MathSciNet  Google Scholar 

  • Fonseca I, Leoni G (2007) Modern methods in the calculus of variations: \(L^{p}\) spaces. Springer, Berlin

    MATH  Google Scholar 

  • Hernandez L, Smirnova T, Kedrin D, Wyckoff J, Zhu L, Stanley ER et al (2009) The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin \(\beta _{1}\) and CXCL12. Cancer Res 69(7):3221–3227

    Article  Google Scholar 

  • Knútsdóttir H, Pálsson E, Edelstein-Keshet L (2014) Mathematical model of macrophage-facilitated breast cancer cells invasion. J Theor Biol 357:184–199

    Article  MathSciNet  Google Scholar 

  • Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629

    Google Scholar 

  • Leung E, Xue A, Wang Y, Rougerie P, Sharma VP, Eddy R et al (2017) Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene 36(19):2680

    Article  Google Scholar 

  • Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW (2002) Macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 7:147–162

    Article  Google Scholar 

  • Lions JL (2013) Equations differentielles operationnelles: et problèmes aux limites, vol 111. Springer, Berlin

    MATH  Google Scholar 

  • Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13(7):265–270

    Article  Google Scholar 

  • Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322

    Article  Google Scholar 

  • Nagai T, Senba T (1997) Behavior of radially symmetric solutions of a system related to chemotaxis. Nonlinear Anal Theory Methods Appl 30(6):3837–3842

    Article  MathSciNet  Google Scholar 

  • Perthame B (2006) Transport equations in biology. Springer, Berlin

    MATH  Google Scholar 

  • Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13(12):858

    Article  Google Scholar 

  • Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11(8):573

    Article  Google Scholar 

  • Simon J (1986) Compact sets in the space Lp (O, T; B). Ann Mat 146(1):65–96

    Article  Google Scholar 

  • Shafrir I, Wolansky G (2005) Moser–Trudinger and logarithmic HLS inequalities for systems. J Eur Math Soc 4:413–448

    Article  MathSciNet  Google Scholar 

  • Shafrir I, Wolansky G (2005) The logarithmic HLS inequality for systems on compact manifolds. J Funct Anal 227(1):200–226

    Article  MathSciNet  Google Scholar 

  • Shafrir I, Wolansky G (2005) Moser–Trudinger and logarithmic HLS inequalities for systems. J Eur Math Soc 7(4):413–448

    Article  MathSciNet  Google Scholar 

  • Su S, Liu Q, Chen J, Chen J, Chen F, He C et al (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer cell 25(5):605–620

    Article  Google Scholar 

  • Tao Y, Winkler M (2015) Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals. Discrete Contin Dyn Syst Ser B 20(9):3165–3183

    Article  MathSciNet  Google Scholar 

  • Tao Y, Winkler M (2014) Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J Differ Equ 257(3):784–815

    Article  MathSciNet  Google Scholar 

  • Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292

    Article  Google Scholar 

  • Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS (2005) Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 15(3):138–145

    Article  Google Scholar 

  • Wolansky G (1992) On steady distributions of self-attracting clusters under friction and fluctuations. Arch Ration Mech Anal 119(4):355–391

    Article  MathSciNet  Google Scholar 

  • Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64(19):7022–7029

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges to Ph.D. Matthias Piesche, Facultad de Medicina, Universidad Católica del Maule, for his important comments for contextualize adequately in cancer progression the mathematical system studied in this work. The author gratefully acknowledges the comments on the first and the second drafts made by reviewers, which have greatly enriched this subsequent manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Vilches.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

For K. Vilches this work was funded by CONICYT PAI/ACADEMIA 79150021 2016–2018. For C. Conca this work is partially supported by PFBasal-001 and AFB170001 Projects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espejo, E., Vilches, K. & Conca, C. A simultaneous blow-up problem arising in tumor modeling. J. Math. Biol. 79, 1357–1399 (2019). https://doi.org/10.1007/s00285-019-01397-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01397-6

Keywords

Mathematics Subject Classification

Navigation