Skip to main content

Advertisement

Log in

The block spectrum of RNA pseudoknot structures

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we analyze the length-spectrum of blocks in \(\gamma \)-structures. \(\gamma \)-structures are a class of RNA pseudoknot structures that play a key role in the context of polynomial time RNA folding. A \(\gamma \)-structure is constructed by nesting and concatenating specific building components having topological genus at most \(\gamma \). A block is a substructure enclosed by crossing maximal arcs with respect to the partial order induced by nesting. We show that, in uniformly generated \(\gamma \)-structures, there is a significant gap in this length-spectrum, i.e., there asymptotically almost surely exists a unique longest block of length at least \(n-O(n^{1/2})\) and that with high probability any other block has finite length. For fixed \(\gamma \), we prove that the length of the complement of the longest block converges to a discrete limit law, and that the distribution of short blocks of given length tends to a negative binomial distribution in the limit of long sequences. We refine this analysis to the length spectrum of blocks of specific pseudoknot types, such as H-type and kissing hairpins. Our results generalize the rainbow spectrum on secondary structures by the first and third authors and are being put into context with the structural prediction of long non-coding RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Andersen JE, Huang FWD, Penner RC, Reidys CM (2012) Topology of RNA-interaction structures. J Comput Biol 19:928–943

    Article  MathSciNet  Google Scholar 

  • Andersen JE, Penner RC, Reidys CM, Waterman MS (2013) Topological classification and enumeration of RNA structures by genus. J Math Biol 67(5):1261–1278

    Article  MathSciNet  MATH  Google Scholar 

  • Backofen R, Tsur D, Zakov S, Ziv-Ukelson M (2011) Sparse RNA folding: time and space efficient algorithms. J Discrete Algorithms 9(1):12–31

    Article  MathSciNet  MATH  Google Scholar 

  • Bon M, Vernizzi G, Orland H, Zee A (2008) Topological classification of RNA structures. J Mol Biol 379:900–911

    Article  Google Scholar 

  • Chen J, Blasco M, Greider C (2000) Secondary structure of vertebrate telomerase RNA. Cell 100(5):503–514

    Article  Google Scholar 

  • Clote P, Ponty Y, Steyaert JM (2012) Expected distance between terminal nucleotides of RNA secondary structures. J Math Biol 65(3):581–599

    Article  MathSciNet  MATH  Google Scholar 

  • Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2(12):919–929

    Article  Google Scholar 

  • Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Graham RL, Knuth DE, Patashnik O (1994) Concrete mathematics: a foundation for computer science, 2nd edn. Addison-Wesley Professional, Reading

    MATH  Google Scholar 

  • Han HSW, Reidys CM (2012) The \(5^{\prime }\)\(3^{\prime }\) distance of RNA secondary structures. J Comput Biol 19(7):868–878

    Article  MathSciNet  Google Scholar 

  • Han HSW, Li TJX, Reidys CM (2014) Combinatorics of \(\gamma \)-structures. J Comput Biol 21:591–608

    Article  MathSciNet  Google Scholar 

  • Harer J, Zagier D (1986) The Euler characteristic of the moduli space of curves. Invent Math 85:457–485

    Article  MathSciNet  MATH  Google Scholar 

  • Howell J, Smith T, Waterman M (1980) Computation of generating functions for biological molecules. SIAM J Appl Math 39(1):119–133

    Article  MathSciNet  MATH  Google Scholar 

  • Huang FWD, Reidys CM (2015) Shapes of topological RNA structures. Math Biosci 270(Part 4):57–65

    Article  MathSciNet  MATH  Google Scholar 

  • Hunter C, Sanders J (1990) The nature of \(\pi \)\(\pi \) interactions. J Am Chem Soc 112(14):5525–5534

    Article  Google Scholar 

  • Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208

    Article  Google Scholar 

  • Konings DA, Gutell RR (1995) A comparison of thermodynamic foldings with comparatively derived structures of 16s and 16s-like rRNAs. RNA 1(6):559–574

    Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31(1):147–157

    Article  Google Scholar 

  • Li TJX (2014) Combinatorics of shapes, topological RNA structures and RNA–RNA interactions. Ph.D Thesis, University of Southern Denmark, University of Southern Denmark

  • Li TJX, Reidys CM (2011) Combinatorial analysis of interacting RNA molecules. Math Biosci 233:47–58

    Article  MathSciNet  MATH  Google Scholar 

  • Li TJX, Reidys CM (2013) The topological filtration of \(\gamma \)-structures. Math Biosci 241:24–33

    Article  MathSciNet  MATH  Google Scholar 

  • Li TJX, Reidys CM (2017) Statistics of topological RNA structures. J Math Biol 74:1793–1821

    Article  MathSciNet  MATH  Google Scholar 

  • Li TJX, Reidys CM (2018) The rainbow spectrum of RNA secondary structures. Bull Math Biol 80(6):1514–1538

    Article  MathSciNet  MATH  Google Scholar 

  • Loebl M, Moffatt I (2008) The chromatic polynomial of fatgraphs and its categorification. Adv Math 217:1558–1587

    Article  MathSciNet  MATH  Google Scholar 

  • Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2(6):551–563

    Google Scholar 

  • Massey W (1967) Algebraic topology: an introduction. Springer-Verlag, New York

    MATH  Google Scholar 

  • McCarthy BJ, Holland JJ (1965) Denatured DNA as a direct template for in vitro protein synthesis. Proc Natl Acad Sci USA 54(3):880–886

    Article  Google Scholar 

  • Möhl R, Salari R, Will S (2010) Sparsification of RNA structure prediction including pseudoknots. Algorithms Mol Biol 5:39

    Article  Google Scholar 

  • Orland H, Zee A (2002) RNA folding and large \(n\) matrix theory. Nucl Phys B 620:456–476

    Article  MathSciNet  MATH  Google Scholar 

  • Penner R (2004) Cell decomposition and compactification of Riemann’s moduli space in decorated Teichmüller theory. In: Tongring N, Penner R (eds) Woods hole mathematics-perspectives in math and physics. World Scientific, Singapore, pp 263–301

    Chapter  Google Scholar 

  • Penner R, Waterman M (1993) Spaces of RNA secondary structures. Adv Math 217:31–49

    Article  MathSciNet  MATH  Google Scholar 

  • Penner RC, Knudsen M, Wiuf C, Andersen JE (2010) Fatgraph models of proteins. Commun Pure Appl Math 63(10):1249–1297

    Article  MathSciNet  MATH  Google Scholar 

  • Reeder J, Steffen P, Giegerich R (2007) pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res 35(Web Server issue):W320–W324

    Article  Google Scholar 

  • Reidys CM, Wang RR, Zhao AYY (2010) Modular, k-noncrossing diagrams. Electron J Comb 17(1):R76

    MathSciNet  MATH  Google Scholar 

  • Reidys CM, Huang FWD, Andersen JE, Penner RC, Stadler PF, Nebel ME (2011) Topology and prediction of RNA pseudoknots. Bioinformatics 27:1076–1085

    Article  Google Scholar 

  • Salari R, Möhl M, Will S, Sahinalp SC, Backofen R (2010) Time and space efficient RNA–RNA interaction prediction via sparse folding. In: Berger B (ed) Research in computational molecular biology, no. 6044 lecture notes in computer science. Springer, Berlin, pp 473–490

    Google Scholar 

  • Schmitt W, Waterman M (1994) Linear trees and RNA secondary structure. Discrete Appl Math 51:317–323

    Article  MathSciNet  MATH  Google Scholar 

  • Smith TF, Waterman MS (1978) RNA secondary structure. Math Biol 42:31–49

    MATH  Google Scholar 

  • Šponer J, Leszczynski J, Hobza P (2001) Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 61(1):3–31

    Article  Google Scholar 

  • Šponer J, Sponer J, Mládek A, Jurečka P, Banáš P, Otyepka M (2013) Nature and magnitude of aromatic base stacking in DNA and RNA: quantum chemistry, molecular mechanics, and experiment. Biopolymers 99(12):978–988

    Google Scholar 

  • Staple DW, Butcher SE (2005) Pseudoknots: RNA structures with diverse functions. PLOS Biol 3(6):e213

    Article  Google Scholar 

  • Stein P, Waterman M (1979) On some new sequences generalizing the Catalan and Motzkin numbers. Discrete Math 26(3):261–272

    Article  MathSciNet  MATH  Google Scholar 

  • Tsukiji S, Pattnaik SB, Suga H (2003) An alcohol dehydrogenase ribozyme. Nat Struct Biol 10(9):713–717

    Article  Google Scholar 

  • Tuerk C, MacDougal S, Gold L (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci USA 89(15):6988–6992

    Article  Google Scholar 

  • Vernizzi G, Orland H, Zee A (2005) Enumeration of RNA structures by matrix models. Phys Rev Lett 94(16):168,103

    Article  Google Scholar 

  • Waterman M (1978) Secondary structure of single-stranded nucleic acids. In: Rota GC (ed) Studies on foundations and combinatorics, advances in mathematics supplementary studies, vol 1. Academic Press, Cambridge, pp 167–212

    Google Scholar 

  • Waterman M (1979) Combinatorics of RNA hairpins and cloverleaves. Stud Appl Math 60(2):91–98

    Article  MathSciNet  MATH  Google Scholar 

  • Westhof E, Jaeger L (1992) RNA pseudoknots. Curr Opin Chem Biol 2:327–333

    Google Scholar 

  • Wexler Y, Zilberstein C, Ziv-Ukelson M (2007) A study of accessible motifs and RNA folding complexity. J Comput Biol 14(6):856–872

    Article  MathSciNet  MATH  Google Scholar 

  • Yoffe AM, Prinsen P, Gelbart WM, Ben-Shaul A (2011) The ends of a large RNA molecule are necessarily close. Nucleic Acids Res 39(1):292–299

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their comments and suggestions. We want to thank Executive Director of Biocomplexity Institute and Initiative, Dr. Christopher Barrett, for stimulating discussions. Christian M. Reidys is a Thermo Fisher Scientific Fellow in Advanced Systems for Information Biology and acknowledges their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Reidys.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T.J.X., Burris, C.S. & Reidys, C.M. The block spectrum of RNA pseudoknot structures. J. Math. Biol. 79, 791–822 (2019). https://doi.org/10.1007/s00285-019-01379-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01379-8

Keywords

Mathematics Subject Classification

Navigation