Structural properties of the seed bank and the two island diffusion


We investigate various aspects of the (biallelic) Wright–Fisher diffusion with seed bank in conjunction with and contrast to the two-island model analysed e.g. in Kermany et al. (Theor Popul Biol 74(3):226–232, 2008) and Nath and Griffiths (J Math Biol 31(8):841–851, 1993), including moments, stationary distribution and reversibility, for which our main tool is duality. Further, we show that the Wright–Fisher diffusion with seed bank can be reformulated as a one-dimensional stochastic delay differential equation, providing an elegant interpretation of the age structure in the seed bank also forward in time in the spirit of Kaj et al. (J Appl Probab 38(2):285–300, 2001). We also provide a complete boundary classification for this two-dimensional SDE using martingale-based reasoning known as McKean’s argument.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Blath J, González Casanova A, Eldon B, Kurt N, Wilke-Berenguer M (2015) Genetic variability under the seedbank coalescent. Genetics 200(3):921–934

    Google Scholar 

  2. Blath J, González Casanova A, Kurt N, Wilke-Berenguer M (2016) A new coalescent for seed-bank models. Ann Appl Probab 26(2):857–891

    MathSciNet  MATH  Google Scholar 

  3. den Hollander F, Pederzani G (2017) Multi-colony Wright–Fisher with seed-bank. Indag Math 28(3):637–669

    MathSciNet  MATH  Google Scholar 

  4. Etheridge A (2011) Some mathematical models from population genetics, volume 2012 of lecture notes in mathematics. Springer, Heidelberg. Lectures from the 39th Probability Summer School held in Saint-Flour, 2009. École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]

  5. Etheridge AM, Griffiths RC (2009) A coalescent dual process in a Moran model with genic selection. Theor Popul Biol 75(4):320–330 (Sam Karlin: Special Issue)

    MATH  Google Scholar 

  6. Etheridge AM, Griffiths RC, Taylor JE (2010) A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit. Theor Popul Biol 78(2):77–92

    MATH  Google Scholar 

  7. Ethier SN, Kurtz TG (1992) On the stationary distribution of the neutral diffusion model in population genetics. Ann Appl Probab 2(1):24–35

    MathSciNet  MATH  Google Scholar 

  8. Filipović D, Larsson M (2016) Polynomial diffusions and applications in finance. Finance Stoch 20(4):931–972

    MathSciNet  MATH  Google Scholar 

  9. Fu R, Gelfand AE, Holsinger KE (2003) Exact moment calculations for genetic models with migration, mutation, and drift. Theor Popul Biol 63(3):231–243 (Uses of DNA and genetic markers for forensics and population studies)

    MATH  Google Scholar 

  10. González Casanova A, Spanò D (2018) Duality and fixation for \(\Xi \)-Wright-Fisher processes with frequency-dependent selection. Ann Appl Probab 28(1):250–284

    MathSciNet  MATH  Google Scholar 

  11. Griffiths RC, Jenkins PA, Lessard S (2016) A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning. Theor Popul Biol 112(Supplement C):126–138

    MATH  Google Scholar 

  12. Hildebrandt TH, Schoenberg IJ (1933) On linear functional operations and the moment problem for a finite interval in one or several dimensions. Ann Math 34(2):317–328

    MathSciNet  MATH  Google Scholar 

  13. Jansen S, Kurt N (2014) On the notion(s) of duality for Markov processes. Probab Surv 11:59–120

    MathSciNet  MATH  Google Scholar 

  14. Kaj I, Krone SM, Lascoux M (2001) Coalescent theory for seed bank models. J Appl Probab 38(2):285–300

    MathSciNet  MATH  Google Scholar 

  15. Kermany ARR, Zhou X, Hickey DA (2008) Joint stationary moments of a two-island diffusion model of population subdivision. Theor Popul Biol 74(3):226–232

    MATH  Google Scholar 

  16. Krone SM, Neuhauser C (1997) Ancestral processes with selection. Theor Popul Biol 51(3):210–237

    MATH  Google Scholar 

  17. Lambert A, Ma C (2015) The coalescent in peripatric metapopulations. J Appl Probab 52(2):538–557

    MathSciNet  MATH  Google Scholar 

  18. Larsson M, Pulido S (2017) Polynomial diffusions on compact quadric sets. Stoch Process Appl 127(3):901–926

    MathSciNet  MATH  Google Scholar 

  19. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9(2):119–130

    Google Scholar 

  20. Maisonneuve B (1977) Une mise au point sur les martingales locales continues définies sur un intervalle stochastique. In: Lecture notes in mathematics, vol 581, pp 435–445

  21. Mayerhofer E, Pfaffel O, Stelzer R (2011) On strong solutions for positive definite jump diffusions. Stoch Process Appl 121(9):2072–2086

    MathSciNet  MATH  Google Scholar 

  22. Moran PAP (1959) The theory of some genetical effects of population subdivision. Austral J Biol Sci 12(2):109–116

    MATH  Google Scholar 

  23. Nath HB, Griffiths RC (1993) The coalescent in two colonies with symmetric migration. J Math Biol 31(8):841–851

    MathSciNet  MATH  Google Scholar 

  24. Revuz D, Yor M (1999) Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], 3rd edn. Springer, Berlin

  25. Shiga T, Shimizu A (1980) Infinite-dimensional stochastic differential equations and their applications. J Math Kyoto Univ 20(3):395–416

    MathSciNet  MATH  Google Scholar 

  26. Shoemaker WR, Lennon JT (2018) Evolution with a seed bank: the population genetic consequences of microbial dormancy. Evol Appl. 11(1):60–75

    Google Scholar 

  27. Wakeley J (ed) (2008) Coalescent theory: an introduction. Roberts and Company, Greenwood Village, CO

  28. Wright S (1931) Evolution in Mendelian populations. Genetics 16(2):97–159

    Google Scholar 

Download references


The authors would like to thank S. Pulido for pointing out the connection to polynomial diffusions and the reviewers for helpful suggestions. JB and MWB were supported by DFG Priority Programme 1590 “Probabilistic Structures in Evolution”, Project BL 1105/5-1, MWB also by Project KU 2886/1-1 awarded to N. Kurt. MWB would like to thank the TU Berlin for their hospitality. EB received support from the Berlin Mathematical School and the DFG RTG 1845 “Stochastic Analysis with applications in biology, finance and physics”. AGC was supported by CONACYT, Project FC-2016-1946.

Author information



Corresponding author

Correspondence to Maite Wilke-Berenguer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blath, J., Buzzoni, E., González Casanova, A. et al. Structural properties of the seed bank and the two island diffusion. J. Math. Biol. 79, 369–392 (2019).

Download citation


  • Wright–Fisher diffusion
  • Seed bank coalescent
  • Two island model
  • Boundary classification
  • Duality
  • Reversibility
  • Stochastic delay differential equation

Mathematics Subject Classification

  • Primary 60K35
  • Secondary 92D10