Skip to main content

Advertisement

Log in

A general theory for target reproduction numbers with applications to ecology and epidemiology

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A general framework for threshold parameters in population dynamics is developed using the concept of target reproduction numbers. This framework identifies reproduction numbers and other threshold parameters in the literature in terms of their roles in population control. The framework is applied to the analysis of single and multiple control strategies in ecology and epidemiology, and this provides new biological insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen LJS, van den Driessche P (2008) The basic reproduction number in some discrete-time epidemic models. J Differ Equ Appl 14:1127–1147

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Bani-Yaghoub M, Gautam R, Shuai Z, van den Driessche P, Ivanek R (2012) Reproduction numbers for infections with free-living pathogens growing in the environment. J Biol Dyn 6:923–940

    Article  Google Scholar 

  • Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical sciences. Academic Press, New York

    MATH  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Chow L, Fan M, Feng Z (2011) Dynamics of a multigroup epidemiological model with group-targeted vaccination strategies. J Theor Biol 291:56–64

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner C, Beier JC, Cantrell RS, Impoinvil D, Kapitanski L, Potts MD, Troyo A, Ruan S (2009) The effect of human movement on the persistence of vector-borne diseases. J Theor Biol 258:550–560

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing JM, Diekmann O (2016) The many guises of \(R_0\) (a didactic note). J Theor Biol 404:295–302

    Article  MATH  Google Scholar 

  • Cushing JM, Zhou Y (1994) The net reproductive value and stability in matrix population models. Nat Resour Model 8:297–333

    Article  Google Scholar 

  • de-Camino-Beck T, Lewis MA (2007) A new method for calculating net reproductive rate from graph reduction with applications to the control of invasive species. Bull Math Biol 69:1341–1354

    Article  MathSciNet  MATH  Google Scholar 

  • de-Camino-Beck T, Lewis MA (2008) On net reproductive rate and the timing of reproductive output. Am Nat 172:128–139

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7:873–885

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Britton T (2013) Mathematical tools for understanding infectious disease dynamics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Guo H, Li MY, Shuai Z (2006) Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can Appl Math Q 14:259–284

    MathSciNet  MATH  Google Scholar 

  • Heesterbeek JAP, Roberts MG (2007) The type-reproduction number \(T\) in models for infectious disease control. Math Biosci 206:3–10

    Article  MathSciNet  MATH  Google Scholar 

  • Heffernan JM, Smith RJ, Wahl LM (2005) Perspectives on the basic reproduction ratio. J R Soc Interface 2:281–293

    Article  Google Scholar 

  • Hinz HL, McClay A (2000) Ten years of scentless chamomile: Prospects for the biological control of a weed of cultivated land. In: Proceedings of the X international symposium on biological control of weeds, pp 537–550

  • Huang Q, Lewis MA (2015) Home fidelity and reproductive rate for migratory populations. Theor Ecol 8:187–205

    Article  Google Scholar 

  • Keeling MJ, Grenfell BT (2000) Individual-based perspectives on \(R_0\). J Theor Biol 203:51–61

    Article  Google Scholar 

  • Knipl D (2016) A new approach for designing disease intervention strategies in metapopulation models. J Biol Dyn 10:71–94

    Article  MathSciNet  Google Scholar 

  • Lajmanovich A, Yorke JA (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Math Biosci 28:221–236

    Article  MathSciNet  MATH  Google Scholar 

  • Li C-K, Schneider H (2002) Applications of Perron–Frobenius theory to population dynamics. J Math Biol 44:450–462

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Blakeley D, Smith RJ (2011) The failure of \(R_0\). Comput Math Models Med, Article ID 527610

  • Lloyd AL, May RM (1996) Spatial heterogeneity in epidemic models. J Theor Biol 79:1–11

    Article  Google Scholar 

  • Moon JW, Shuai Z, van den Driessche P (2014) Walks and cycles on a digraph with application to population dynamics. Linear Algebra Appl 451:182–196

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts MG (2007) The pluses and minuses of \(R_0\). J R Soc Interface 4:949–961

    Article  Google Scholar 

  • Roberts MG, Heesterbeek JAP (2003) A new method for estimating the effort required to control an infectious disease. Proc R Soc Lond B 270:1359–1364

    Article  Google Scholar 

  • Rueffler C, Metz JAJ (2013) Necessary and sufficient conditions for \(R_0\) to be a sum of contributions of fertility loops. J Math Biol 66:1099–1122

    Article  MathSciNet  MATH  Google Scholar 

  • Rueffler C, Metz JAJ, Van Dooren TJM (2013) What life cycle graphs can tell about the evolution of life histories. J Math Biol 66:225–279

    Article  MathSciNet  MATH  Google Scholar 

  • Saad-Roy CM, Shuai Z, van den Driessche P (2015) Models of Bovine Babesiosis including juvenile cattle. Bull Math Biol 77:514–547

    Article  MathSciNet  MATH  Google Scholar 

  • Shuai Z, Heesterbeek JAP, van den Driessche P (2013) Extending the type reproduction number to infectious disease control targeting contacts between types. J Math Biol 67:1067–1082. [Also see the erratum, J. Math. Biol., 71:255–257 (2015)]

  • van den Driessche P (2017) Reproduction numbers of infectious disease models. Infect Dis Modell 2:288–303

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • West DB (1996) Introduction to graph theory. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mathematical Biosciences Institute (MBI) at The Ohio State University, which receives its funding through the NSF Grant DMS 1440386, for providing support via two MBI workshops in which this research was initiated and improved. We thank two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Lewis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the Natural Science and Engineering Research Council of Canada (NSERC) through Discovery Grants (MAL and PvdD), by the Canada Research Chair program (MAL), and by the National Science Foundation (NSF) through the Grant DMS 1716445 (ZS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, M.A., Shuai, Z. & van den Driessche, P. A general theory for target reproduction numbers with applications to ecology and epidemiology. J. Math. Biol. 78, 2317–2339 (2019). https://doi.org/10.1007/s00285-019-01345-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01345-4

Keywords

Navigation