Skip to main content
Log in

Calibration of parameters in Dynamic Energy Budget models using Direct-Search methods

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Dynamic Energy Budget (DEB) theory aims to capture the quantitative aspects of metabolism at the individual level, for all species. The parametrization of a DEB model is based on information obtained through the observation of natural populations and experimental research. Currently the DEB toolbox estimates these parameters using the Nelder–Mead Simplex method, a derivative-free direct-search method. However, this procedure presents some limitations regarding convergence and how to address constraints. Framed in the calibration of parameters in DEB theory, this work presents a numerical comparison between the Nelder–Mead Simplex method and the SID-PSM algorithm, a Directional Direct-Search method for which convergence can be established both for unconstrained and constrained problems. A hybrid version of the two methods, named as Simplex Directional Direct-Search, provides a robust and efficient algorithm, able to solve the constrained optimization problems resulting from the parametrization of the biological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Add-my-Pet collection (2018). http://www.bio.vu.nl/thb/deb/deblab/add_my_pet

  • Audet C, Dennis J (2003) Analysis of generalized pattern searches. SIAM J Optim 13:889–903

    Article  MathSciNet  MATH  Google Scholar 

  • Audet C, Dennis J (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17:188–217

    Article  MathSciNet  MATH  Google Scholar 

  • Audet C, Tribes C (2018) Mesh-based Nelder–Mead algorithm for inequality constrained optimization. Comput Optim Appl. https://doi.org/10.1007/s10589-018-0016-0

  • Baas J, Augustine S, Marques GM, Dorne J-L (2018) Dynamic energy budget models in ecological risk assessment: from principles to applications. Sci Total Environ 628–629:249–260

    Article  Google Scholar 

  • Box MJ (1965) A new method of constrained optimization and a comparison with other methods. Comput J 8:42–52

    Article  MathSciNet  MATH  Google Scholar 

  • Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization. MPS-SIAM series on optimization. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Custódio AL, Rocha H, Vicente LN (2010) Incorporating minimum Frobenius norm models in direct search. Comput Optim Appl 46:265–278

    Article  MathSciNet  MATH  Google Scholar 

  • Custódio AL, Vicente LN (2007) Using sampling and simplex derivatives in pattern search methods. SIAM J Optim 18:537–555

    Article  MathSciNet  MATH  Google Scholar 

  • Fan E (2002) Global optimization of Lennard–Jones atomic clusters. Master Thesis, McMaster University, Hamilton, Canada

  • Fletcher R, Leyffer S (2002) Nonlinear programming without a penalty function. Math Program 91:239–269

    Article  MathSciNet  MATH  Google Scholar 

  • Guin J (1968) Modification of the complex method of constrained optimization. Comput J 10:416–417

    Article  Google Scholar 

  • Hare WL (2010) Using derivative free optimization for constrained parameter selection in a home and community care forecasting model. In: International perspectives on operations research and health care, Proceedings of the 34th meeting of the EURO working group on operational research applied to health sciences, pp 61–73

  • Jager T, Barsi A, Hamda NT, Martin BT, Zimmer EI, Ducrot V (2014) Dynamic energy budgets in population ecotoxicology: applications and outlook. Ecol Model 280:140–147

    Article  Google Scholar 

  • Kelley CT (1999) Detection and remediation of stagnation in the Nelder–Mead algorithm using a sufficient decrease condition. SIAM J Optim 10:43–55

    Article  MathSciNet  MATH  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    Article  Google Scholar 

  • Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct-search: new perspectives on some classical and modern methods. SIAM Rev 45:385–482

    Article  MathSciNet  MATH  Google Scholar 

  • Kooijman SALM (1986) Energy budgets can explain body size relations. J Theor Biol 121:269–282

    Article  Google Scholar 

  • Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation. Cambridge University Press, Cambridge

    Google Scholar 

  • Kooijman SALM (2011) Basic methods in theoretical biology. Part of the DEB telecourse. Vrije Universiteit, Amsterdam

    Google Scholar 

  • Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  MathSciNet  MATH  Google Scholar 

  • Le Floc’h F (2012) Issues of Nelder–Mead simplex optimisation with constraints. SSRN eLibrary, 2097904

  • Lewis RM, Torczon V (2000) Pattern search methods for linearly constrained minimization. SIAM J Optim 10:917–941

    Article  MathSciNet  MATH  Google Scholar 

  • Lika K, Kearney MR, Kooijman SALM (2011) The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model II: properties and preliminary patterns. J Sea Res 66:278–288

    Article  Google Scholar 

  • Marques GM, Lika K, Augustine S, Pecquerie L, Kooijman S (2018) Fitting multiple models to multiple data sets. J Sea Res. https://doi.org/10.1016/j.seares.2018.07.004

  • McKinnon KIM (1998) Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM J Optim 9:148–158

    Article  MathSciNet  MATH  Google Scholar 

  • Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20:172–191

    Article  MathSciNet  MATH  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MathSciNet  MATH  Google Scholar 

  • Nisbet RM, Muller EB, Lika K, Kooijman SALM (2000) From molecules to ecosystems through dynamic energy budget models. J Anim Ecol 69:913–926

    Article  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Price CJ, Coope ID, Byatt D (2002) A convergent variant of the Nelder–Mead algorithm. J Optim Theory Appl 113:5–19

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa T, Domingos T, Kooijman SALM (2008) From empirical patterns to theory: a formal metabolic theory of life. Philos Trans R Soc B 363:2453–2464

    Article  Google Scholar 

  • Sousa T, Domingos T, Poggiale JC, Kooijman SALM (2010) Dynamic Energy Budget theory restores coherence in biology. Philos Trans R Soc B 365:3413–3428

    Article  Google Scholar 

  • Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7:1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Tseng P (1999) Fortified-descent simplicial search method: a general approach. SIAM J Optim 10:269–288

    Article  MathSciNet  MATH  Google Scholar 

  • van der Meer J (2006) An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation. J Sea Res 56:85–102

    Article  Google Scholar 

  • Vicente LN, Custódio AL (2012) Analysis of direct searches for discontinuous functions. Math Program 133:299–325

    Article  MathSciNet  MATH  Google Scholar 

  • von Bertalanffy L (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32:217–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Morais.

Additional information

Support for J. V. Morais was provided by FCT/MCTES (PIDDAC) through Project UID/EEA/50009/2013. Support for A. L. Custódio was provided by Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) under the Project UID/MAT/00297/2013 (CMA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, J.V., Custódio, A.L. & Marques, G.M. Calibration of parameters in Dynamic Energy Budget models using Direct-Search methods. J. Math. Biol. 78, 1439–1458 (2019). https://doi.org/10.1007/s00285-018-1315-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1315-x

Keywords

Mathematics Subject Classification

Navigation