Skip to main content

Advertisement

Log in

Reconstructing gene trees from Fitch’s xenology relation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Two genes are xenologs in the sense of Fitch if they are separated by at least one horizontal gene transfer event. Horizonal gene transfer is asymmetric in the sense that the transferred copy is distinguished from the one that remains within the ancestral lineage. Hence xenology is more precisely thought of as a non-symmetric relation: y is xenologous to x if y has been horizontally transferred at least once since it diverged from the least common ancestor of x and y. We show that xenology relations are characterized by a small set of forbidden induced subgraphs on three vertices. Furthermore, each xenology relation can be derived from a unique least-resolved edge-labeled phylogenetic tree. We provide a linear-time algorithm for the recognition of xenology relations and for the construction of its least-resolved edge-labeled phylogenetic tree. The fact that being a xenology relation is a heritable graph property, finally has far-reaching consequences on approximation problems associated with xenology relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aho AV, Sagiv Y, Szymanski TG, Ullman JD (1981) Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J Comput 10(3):405–421

    Article  MathSciNet  Google Scholar 

  • Altenhoff AM, Boeckmann B, Capella-Gutierrez S, Dalquen DA, DeLuca T, Forslund K, Jaime HC, Linard B, Pereira C, Pryszcz LP, Schreiber F, da Silva AS, Szklarczyk D, Train CM, Bork P, Lecompte O, von Mering C, Xenarios I, Sjölander K, Jensen LJ, Martin MJ, Muffato M, Gabaldón T, Lewis SE, Thomas PD, Sonnhammer E, Dessimoz C (2016) Standardized benchmarking in the quest for orthologs. Nat Methods 13:425–430

    Article  Google Scholar 

  • Böcker S, Dress AWM (1998) Recovering symbolically dated, rooted trees from symbolic ultrametrics. Adv Math 138:105–125. https://doi.org/10.1006/aima.1998.1743

    Article  MathSciNet  MATH  Google Scholar 

  • Bryant D (1997) Building trees, hunting for trees, and comparing trees: theory and methods in phylogenetic analysis. Ph.D. thesis, University of Canterbury

  • Bryant D, Steel M (1995) Extension operations on sets of leaf-labeled trees. Adv Appl Math 16(4):425–453. https://doi.org/10.1006/aama.1995.1020

    Article  MathSciNet  MATH  Google Scholar 

  • Cai L (1996) Fixed-parameter tractability of graph modification problems for hereditary properties. Inf Process Lett 58(4):171–176

    Article  MathSciNet  Google Scholar 

  • Cormen TH, Clifford Stein, Leiserson CE, Rivest RL (2009) Introduction to algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  • Crespelle C, Paul C (2006) Fully dynamic recognition algorithm and certificate for directed cographs. Discrete Appl Math 154:1722–1741

    Article  MathSciNet  Google Scholar 

  • Dekker MCH (1986) Reconstruction methods for derivation trees. Master’s thesis, Vrije Universiteit, Amsterdam, Netherlands

  • Deng Y, Fernández-Baca D (2016) Fast compatibility testing for rooted phylogenetic trees. In: Grossi R, Lewenstein M (eds) 27th Annual symposium on combinatorial pattern matching (CPM 2016), Leibniz international proceedings in informatics (LIPIcs), vol 54, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 12:1–12:12

  • Dondi R, El-Mabrouk N, Lafond M (2016) Correction of weighted orthology and paralogy relations-complexity and algorithmic results. In: International workshop on algorithms in bioinformatics. Springer, pp 121–136

  • Dondi R, Mauri G, Zoppis I (2017) Orthology correction for gene tree reconstruction: theoretical and experimental results. Procedia Computer Science 108:1115–1124. In: International conference on computational science, ICCS 2017, 12–14 June 2017, Zurich, Switzerland

    Article  Google Scholar 

  • Ehrenfeucht A, Rozenberg G (1990) Primitivity is hereditary for 2-structures. Theor Comput Sci 70:343–359

    Article  MathSciNet  Google Scholar 

  • Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Biol 19(2):99–113. https://doi.org/10.2307/2412448

    Article  MathSciNet  Google Scholar 

  • Fitch WM (2000) Homology a personal view on some of the problems. Trends Genet 16(5):227–231. https://doi.org/10.1016/S0168-9525(00)02005-9

    Article  Google Scholar 

  • Gabaldon T, Koonin EV (2013) Functional and evolutionary implications of gene orthology. Nat Rev Genet 14:360–366

    Article  Google Scholar 

  • Geiß M, Hellmuth M, Long Y, Stadler P (2018) A short note on undirected Fitch graphs. Art Discrete Appl. Math. 1(1): #P1.08

  • Grünewald S, Steel M, Swenson MS (2007) Closure operations in phylogenetics. Math Biosci 208(2):521–537. https://doi.org/10.1016/j.mbs.2006.11.005

    Article  MathSciNet  MATH  Google Scholar 

  • Hellmuth M (2017) Biologically feasible gene trees, reconciliation maps and informative triples. Algor Mol Biol 12(1):23

    Article  Google Scholar 

  • Hellmuth M (2018) Generalized Fitch graphs: edge-labeled graphs that are explained by edge-labeled trees. Tech. Rep. arXiv:1802.03657v2

  • Hellmuth M, Wieseke N (2016) From sequence data including orthologs, paralogs, and xenologs to gene and species trees. In: Pontarotti P (ed) Evolutionary biology: convergent evolution, evolution of complex traits, concepts and methods. Springer, Cham, pp 373–392

    Chapter  Google Scholar 

  • Hellmuth M, Wieseke N (2017) On tree representations of relations and graphs: symbolic ultrametrics and cograph edge decompositions. J Comb Optim. https://doi.org/10.1007/s10878-017-0111-7

    Article  MATH  Google Scholar 

  • Hellmuth M, Hernandez-Rosales M, Huber KT, Moulton V, Stadler PF, Wieseke N (2013) Orthology relations, symbolic ultrametrics, and cographs. J Math Biol 66(1–2):399–420

    Article  MathSciNet  Google Scholar 

  • Hellmuth M, Wieseke N, Lechner M, Lenhof HP, Middendorf M, Stadler PF (2015) Phylogenomics with paralogs. Proc Natl Acad Sci 112(7):2058–2063. https://doi.org/10.1073/pnas.1412770112

    Article  Google Scholar 

  • Hellmuth M, Stadler PF, Wieseke N (2017) The mathematics of xenology: Di-cographs, symbolic ultrametrics, 2-structures and tree-representable systems of binary relations. J Math Biol 75(1):199–237. https://doi.org/10.1007/s00285-016-1084-3

    Article  MathSciNet  MATH  Google Scholar 

  • Henzinger MR, King V, Warnow T (1999) Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1):1–13. https://doi.org/10.1007/PL00009268

    Article  MathSciNet  MATH  Google Scholar 

  • Hernandez-Rosales M, Hellmuth M, Wieseke N, Huber KT, Moulton V, Stadler PF (2012) From event-labeled gene trees to species trees. BMC Bioinform 13(19):S6

    Google Scholar 

  • Holm J, de Lichtenberg K, Thorup M (2001) Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J ACM 48(4):723–760. https://doi.org/10.1145/502090.502095

    Article  MathSciNet  MATH  Google Scholar 

  • Jansson J, Ng JHK, Sadakane K, Sung WK (2005) Rooted maximum agreement supertrees. Algorithmica 43(4):293–307. https://doi.org/10.1007/s00453-004-1147-5

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen RA (2001) Orthologs and paralogs—we need to get it right. Genome Biol 2:interactions1002. https://doi.org/10.1186/gb-2001-2-8-interactions1002

    Article  Google Scholar 

  • Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39(1):309–338. https://doi.org/10.1146/annurev.genet.39.073003.114725

    Article  Google Scholar 

  • Lafond M, El-Mabrouk N (2014) Orthology and paralogy constraints: satisfiability and consistency. BMC Genomics 15(6):S12. https://doi.org/10.1186/1471-2164-15-S6-S12

    Article  Google Scholar 

  • Lafond M, El-Mabrouk N (2015) Orthology relation and gene tree correction: complexity results. In: International workshop on algorithms in bioinformatics. Springer, pp 66–79

  • Lafond M, Semeria M, Swenson KM, Tannier E, El-Mabrouk N (2013) Gene tree correction guided by orthology. BMC Bioinform 14(15):S5. https://doi.org/10.1186/1471-2105-14-S15-S5

    Article  Google Scholar 

  • Lafond M, Dondi R, El-Mabrouk N (2016) The link between orthology relations and gene trees: a correction perspective. Algor Mol Biol 11:4. https://doi.org/10.1186/s13015-016-0067-7

    Article  MATH  Google Scholar 

  • Lewis JM, Yannakakis M (1980) The node-deletion problem for hereditary properties is NP-complete. J Comput Syst Sci 20(2):219–230

    Article  MathSciNet  Google Scholar 

  • McConnell RM, de Montgolfier F (2005) Linear-time modular decomposition of directed graphs. Discrete Appl Math 145(2):198–209

    Article  MathSciNet  Google Scholar 

  • Möhring RH, Radermacher FJ (1984) Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann Discrete Math 19:257–356

    MathSciNet  MATH  Google Scholar 

  • Nichio BTL, Marchaukoski JN, Raitzz RT (2017) New tools in orthology analysis: a brief review of promising perspectives. Front Genet 8:165. https://doi.org/10.3389/fgene.2017.00165

    Article  Google Scholar 

  • Niedermeier R (2006) Invitation to fixed-parameter algorithms. Oxford lecture series in mathematics and its applications. OUP, Oxford

    Book  Google Scholar 

  • Nojgaard N, Geiß M, Merkle D, Stadler PF, Wieseke N, Hellmuth M (2017) Forbidden time travel: characterization of time-consistent tree reconciliation maps. In: Schwartz R, Reinert K (eds) 17th international workshop on algorithms in bioinformatics (WABI 2017), Leibniz international proceedings in informatics (LIPIcs), vol 88, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 17:1–17:12

  • Nøjgaard N, El-Mabrouk N, Merkle D, Wieseke N, Hellmuth M (2018) Partial homology relations—satisfiability in terms of di-cographs. In: Computing and combinatorics: 24st international conference (COCOON). Springer, Cham (to appear)

    Google Scholar 

  • Novichkov PS, Omelchenko MV, Gelfand MS, Mironov AA, Wolf YI, Koonin EV (2004) Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J Bacteriol 186:6575–6585. https://doi.org/10.1128/JB.186.19.65756585.2004

    Article  Google Scholar 

  • Rancurel C, Legrand L, Danchin EGJ (2017) Alienness: rapid detection of candidate horizontal gene transfers across the tree of life. Genes 8:E248. https://doi.org/10.3390/genes8100248

    Article  Google Scholar 

  • Ravenhall M, Škunca N, Lassalle F, Dessimoz C (2015) Inferring horizontal gene transfer. PLoS Comput Biol 11:e1004,095. https://doi.org/10.1371/journal.pcbi.1004095

    Article  Google Scholar 

  • Seemann CR, Hellmuth M (2018) The matroid structure of representative triple sets and triple closure computation. Eur J Combin 70:384–407

    Article  MathSciNet  Google Scholar 

  • Semple C, Steel M (2003) Phylogenetics, Oxford lecture series in mathematics and its applications, vol 24. Oxford University Press, Oxford

    Google Scholar 

  • Steel M (2016) Phylogeny: discrete and random processes in evolution. CBMS-NSF regional conference series in applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Yannakakis M (1978) Node- and edge-deletion NP-complete problems. In: STOC ’78 Proceedings of the tenth annual ACM symposium on theory of computing, San Diego, California. ACM, pp 253–264

Download references

Acknowledgements

We thank Maribel Hernández Rosales and her team for stimulating discussions. This work was funded in part by the BMBF-funded project “Center for RNA-Bioinformatics” (031A538A, de.NBI-RBC) and a travel grant from DAAD PROALMEX (Proj. No. 278966).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Hellmuth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geiß, M., Anders, J., Stadler, P.F. et al. Reconstructing gene trees from Fitch’s xenology relation. J. Math. Biol. 77, 1459–1491 (2018). https://doi.org/10.1007/s00285-018-1260-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1260-8

Keywords

Mathematics Subject Classification

Navigation