Skip to main content
Log in

Estimating intratumoral heterogeneity from spatiotemporal data

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is a malignant brain cancer with a tendency to both migrate and proliferate. We propose modeling GBM with heterogeneity in cell phenotypes using a random differential equation version of the reaction–diffusion equation, where the parameters describing diffusion (D) and proliferation (\(\rho \)) are random variables. We investigate the ability to perform the inverse problem to recover the probability distributions of D and \(\rho \) using the Prohorov metric, for a variety of probability distribution functions. We test the ability to perform the inverse problem for noisy synthetic data. We then examine the predicted effect of treatment, specifically, chemotherapy, when assuming such a heterogeneous population and compare with predictions from a homogeneous cell population model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adoteye K, Banks H, Cross K, Etchyson S, Flores K, LeBlanc G, Nguyen T, Ross C, Smith E, Stemkovski M, Stokley S (2015) Statistical validation of structured population models for Daphnia magna. Math Biosci 266:73–84

    Article  MathSciNet  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  Google Scholar 

  • Baldock AL, Ahn S, Rockne R, Johnston S, Neal M, Corwin D, Clark-Swanson K, Sterin G, Trister AD, Malone H et al (2014) Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS ONE 9(10):e99057

    Article  Google Scholar 

  • Banks H, Collins E, Flores K, Pershad P, Stemkovski M, Stephenson L (2017) Statistical error model comparison for logistic growth of green algae (Raphidocelis subcapitata). Appl Math Lett 64:213–222

    Article  MathSciNet  Google Scholar 

  • Banks H, Sutton KL, Thompson WC, Bocharov G, Roose D, Schenkel T, Meyerhans A (2011) Estimation of cell proliferation dynamics using CFSE data. Bull Math Biol 73(1):116–150

    Article  MathSciNet  Google Scholar 

  • Banks HT (2012) A functional analysis framework for modeling, estimation and control in science and engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  • Banks HT, Barnes JH, Eberhardt A, Tran H, Wynne S (2002) Modeling and computation of propagating waves from coronary stenosis. Comput Appl Math 21:767–788

    MathSciNet  MATH  Google Scholar 

  • Banks HT, Botsford LW, Kappel F, Wang C (1988) Modeling and estimation in size structured population models. LCDS-CCS Report 87-13, Brown University. In: Proceedings 2nd course on mathematical ecology, (Trieste, December 8–12, 1986) pp 521–541

  • Banks HT, Buksas MW, Lin T (2002) Electromagnetic material interrogation using conductive interfaces and acoustic wavefronts. SIAM FR 21 Philadelphia

  • Banks HT, Davis JL (2007) A comparison of approximation methods for the estimation of probability distributions on parameters. Appl Numer Math 57(5–7):753–777

    Article  MathSciNet  Google Scholar 

  • Banks HT, Davis JL (2008) Quantifying uncertainty in the estimation of probability distributions with confidence bands. CRSC-TR07-21, December 2007. Math Biosci Eng 5:647–667

    Article  MathSciNet  Google Scholar 

  • Banks HT, Davis JL, Ernstberger SL, Hu S, Artimovich E, Dhar AK, Browdy CL (2009a) A comparison of probabilistic and stochastic formulations in modeling growth uncertainty and variability. CRSC-TR08-03, February 2008. J Biol Dyn 3:130–148

    Article  MathSciNet  Google Scholar 

  • Banks HT, Davis JL, Ernstberger SL, Hu S, E, A, Dhar AK (2009b) Experimental design and estimation of growth rate distributions in size-structured shrimp populations. CRSC-TR08-20, November, 2008; Inverse Problems 095003 25, (095,003–28 pages)

  • Banks HT, Davis JL, Hu S (2010) A computational comparison of alternatives to including uncertainty in structured population models. CRSC-TR09-14, June, 2009; in three decades of progress in systems and contro (X. Hu, et al., eds.) pp 19–33

  • Banks HT, Fitzpatrick BG (1991) Estimation of growth rate distributions in size structured population models. Q Appl Math 49:215–235

    Article  MathSciNet  Google Scholar 

  • Banks HT, Fitzpatrick BG, Potter LK, Zhang Y (1998) Estimation of probability distributions for individual parameters using aggregate population data. CRSC-TR98-06, January 1998; in Stochastic analysis, control, optimization, and applications, (W. McEneaney, G. Yin, and Q. Zhang, eds.) pp 353–371

  • Banks HT, Flores KB, Langlois CR, Serio TR, Sindi SS (2017) Estimating the rate of prion aggregate amplification in yeast with a generation and structured population model. Inverse Probl Sci Eng 1–23

  • Banks HT, Gibson NL (2006) Electromagnetic inverse problems involving distributions of dielectric mechanisms and parameters. CRSC-TR05-29, August 2005. Q Appl Math 64:749–795

    Article  Google Scholar 

  • Banks HT, Hu S, Kenz ZR, Kruse C, Shaw S, Whiteman JR, Brewin MP, Greenwald SE, Birch MJ (2013a) Material parameter estimation and hypothesis testing on a 1d viscoelastic stenosis model: methodology. CRSC-TR12-09, April, 2012; J Inverse Ill-posed Probl 21:25–57

  • Banks HT, Hu S, Kenz ZR, Kruse C, Shaw S, Whiteman JR, Brewin MP, Greenwald SE, Birch MJ (2013b) Model validation for a noninvasive arterial stenosis detection problem. CRSC-TR12-22, December, 2012. Math Biosci Eng 11:427–448

  • Banks HT, Hu S, Thompson WC (2014) Modeling and inverse problems in the presence of uncertainty. CRC Press, Boca Raton

    Book  Google Scholar 

  • Banks HT, Joyner ML (2017) AIC under the framework of least squares estimation. Appl Math Lett 74:33–45

    Article  MathSciNet  Google Scholar 

  • Banks HT, Kenz ZR, Thompson WC (2012) A review of selected techniques in inverse problem nonparametric probability distribution estimation. CRSC-TR12-13, May 2012; J Inverse Ill-Posed Probl 429–460

  • Banks HT, Kunisch K (1989) Estimation techniques for distributed parameter systems. Birkhausen, Boston

    Book  Google Scholar 

  • Banks HT, Pinter GA (2005) A probabilistic multiscale approach to hysteresis in shear wave propagation in biotissue. CRSC-TR04-03, January 2004; SIAM. J Multiscale Model Simul 3:395–412

  • Banks HT, Potter LK (2004) Probabilistic methods for addressing uncertainty and variability in biological models: application to a toxicokinetic model. CRSC-TR02-27, September 2002. Mathematical Biosciences 192:193–22

  • Banks HT, Thompson WC, Peligero GS, Argilaguet J, Meyerhans A (2012) A division-dependent compartmental model for computing cell numbers in cfse-based lymphocyte proliferation assays. CRSC-TR12-03, January 2012. Math Biosci Eng 9:699–736

  • Bondiau PY, Clatz O, Sermesant M, Marcy PY, Delingette H, Frenay M, Ayache N (2008) Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging. Phys Med Biol 53(4):879

    Article  Google Scholar 

  • Chu J, Ducrot A, Magal P, Ruan S (2009) Hopf bifurcation in a size-structured population dynamic model with random growth. J Differ Eq 247(3):956–1000

    Article  MathSciNet  Google Scholar 

  • Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-d growth of brain tumors in mr images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346

    Article  Google Scholar 

  • de Rioja VL, Isern N, Fort J (2016) A mathematical approach to virus therapy of glioblastomas. Biol Direct 11(1):1

    Article  Google Scholar 

  • Engwer C, Hillen T, Knappitsch M, Surulescu C (2015) Glioma follow white matter tracts: a multiscale dti-based model. J Math Biol 71(3):551–582

    Article  MathSciNet  Google Scholar 

  • Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P (2006) Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 53(8):799–808

    Article  Google Scholar 

  • Gallego O (2015) Nonsurgical treatment of recurrent glioblastoma. Curr Oncol 22(4):e273

    Article  Google Scholar 

  • Garay T, Juhász É, Molnár E, Eisenbauer M, Czirók A, Dekan B, László V, Hoda MA, Döme B, Tímár J et al (2013) Cell migration or cytokinesis and proliferation? Revisiting the go or grow hypothesis in cancer cells in vitro. Exp Cell Res 319(20):3094–3103

    Article  Google Scholar 

  • Hall A, Gandar P (1995) Stochastic models for fruit growth. In: IV International symposium on computer modelling in fruit research and orchard management 416:113–120

  • Hathout L, Ellingson B, Pope W (2016) Modeling the efficacy of the extent of surgical resection in the setting of radiation therapy for glioblastoma. Cancer Sci 107(8):1110–1116

    Article  Google Scholar 

  • Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2012) ‘Go or grow’: the key to the emergence of invasion in tumour progression? Math Med Biol 29(1):49–65

    Article  MathSciNet  Google Scholar 

  • Jackson PR, Juliano J, Hawkins-Daarud A, Rockne RC, Swanson KR (2015) Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice. Bull Math Biol 77(5):846–856

    Article  MathSciNet  Google Scholar 

  • Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pélégrini-Issac M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med 54(3):616–624

    Article  Google Scholar 

  • Kohandel M, Sivaloganathan S, Oza A (2006) Mathematical modeling of ovarian cancer treatments: sequencing of surgery and chemotherapy. J Theor Biol 242(1):62–68

    Article  MathSciNet  Google Scholar 

  • Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N (2010) Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14:111–125

    Article  Google Scholar 

  • Konukoglu E, Clatz O, Bondiau PY, Sermesant M, Delingette H, Ayache N (2007) Towards an identification of tumor growth parameters from time series of images. In: Medical image computing and computer-assisted intervention–MICCAI 2007, Springer, pp 549–556

  • Martínez-González A, Calvo GF, Pérez Romasanta LA, Pérez-García VM (2012) Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications. Bull Math Biol 1–22

  • Murray JD (2003) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, New York

    MATH  Google Scholar 

  • Norden AD, Wen PY (2006) Glioma therapy in adults. Neurologist 12(6):279–292

    Article  Google Scholar 

  • Norton L, Simon R (1977) Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep 61(7):1307

    Google Scholar 

  • Norton L, Simon R (1986) The Norton–Simon hypothesis revisited. Cancer Treat Rep 70(1):163

    Google Scholar 

  • Onishi M, Ichikawa T, Kurozumi K, Date I (2011) Angiogenesis and invasion in glioma. Brain Tumor Pathology 28(1):13–24

    Article  Google Scholar 

  • Painter K, Hillen T (2013) Mathematical modelling of glioma growth: the use of diffusion tensor imaging (dti) data to predict the anisotropic pathways of cancer invasion. J Theor Biol 323:25–39

    Article  MathSciNet  Google Scholar 

  • Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M (2007) Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med Biol 52(11):3291

    Article  Google Scholar 

  • Rockne R, Rockhill J, Mrugala M, Spence A, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord E Jr, Swanson K (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271

    Article  Google Scholar 

  • Rutter EM, Stepien TL, Anderies BJ, Plasencia JD, Woolf EC, Scheck AC, Turner GH, Liu Q, Frakes D, Kodibagkar V, Kuang Y, Preul MC, Kostelich EJ (2017) Mathematical analysis of glioma growth in a murine model. Sci Rep 7:2508. https://doi.org/10.1038/s41598-017-02462-0

    Article  Google Scholar 

  • Sirlanci M, Kang D, Fairbairn CE, Luczak SE, Pan R, Yu X, Rosen IG (2018) Estimating the distribution of random parameters in, and deconvolving the input signal to, a diffusion equation forward model for a transdermal alcohol biosensor. Submitted for Publication

  • Sirlanci M, Luczak S, Rosen IG (2017) Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators. In: American control conference (ACC), 2017, pp 3171–3176. IEEE

  • Sirlanci M, Rosen IG (2018) Estimation of the distribution of random parameters in discrete time abstract parabolic systems with unbounded input and output: Approximation and convergence. Submitted for Publication

  • Skipper HE (1964) Experimental evaluation of potential anticancer agents. xiii. on the criteria and kinetics associated with” curability” of experimental leukemia. Cancer Chemother Rep 35:1–111

    Google Scholar 

  • Soong T, Chuang S (1973) Solutions of a class of random differential equations. SIAM J Appl Math 24(4):449–459

    Article  Google Scholar 

  • Soong TT (1973) Random differential equations in science and engineering. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Stein AM, Demuth T, Mobley D, Berens M, Sander LM (2007) A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys J 92(1):356–365

    Article  Google Scholar 

  • Stepien TL, Rutter EM, Kuang Y (2015) A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Math Biosci Eng 12(6):1157–1172

    Article  MathSciNet  Google Scholar 

  • Swan A, Hillen T, Bowman JC, Murtha AD (2017) A patient-specific anisotropic diffusion model for brain tumour spread. Bull Math Biol. https://doi.org/10.1007/s11538-017-0271-8

    Article  MATH  Google Scholar 

  • Swanson K, Alvord E, Murray J (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–330

    Article  Google Scholar 

  • Swanson K, Alvord E, Murray J (2003) Virtual resection of gliomas: effect of extent of resection on recurrence. Math Comput Modell 37(11):1177–1190

    Article  Google Scholar 

  • Swanson KR, Alvord E, Murray J (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86(1):14–18

    Article  Google Scholar 

  • Swanson KR, Bridge C, Murray J, Alvord EC (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216(1):1–10

    Article  Google Scholar 

  • Tian JP, Friedman A, Wang J, Chiocca EA (2009) Modeling the effects of resection, radiation and chemotherapy in glioblastoma. J Neurooncol 91(3):287

    Article  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  Google Scholar 

  • Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R (2002) Processing and visualization for diffusion tensor mri. Med Image Anal 6(2):93–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Flores.

Additional information

In memory of Karl Hadeler, for his inspiring research and teaching, and dedication to mentoring.

This research was supported in part by the Air Force Office of Scientific Research under Grant Number AFOSR FA9550-15-1-0298 and in part by the National Science Foundation under NSF Grant Number DMS-0946431.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xlsx 34 KB)

Supplementary material 2 (pdf 550 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutter, E.M., Banks, H.T. & Flores, K.B. Estimating intratumoral heterogeneity from spatiotemporal data. J. Math. Biol. 77, 1999–2022 (2018). https://doi.org/10.1007/s00285-018-1238-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1238-6

Keywords

Mathematics Subject Classification

Navigation