Abstract
Glioblastoma multiforme (GBM) is a malignant brain cancer with a tendency to both migrate and proliferate. We propose modeling GBM with heterogeneity in cell phenotypes using a random differential equation version of the reaction–diffusion equation, where the parameters describing diffusion (D) and proliferation (\(\rho \)) are random variables. We investigate the ability to perform the inverse problem to recover the probability distributions of D and \(\rho \) using the Prohorov metric, for a variety of probability distribution functions. We test the ability to perform the inverse problem for noisy synthetic data. We then examine the predicted effect of treatment, specifically, chemotherapy, when assuming such a heterogeneous population and compare with predictions from a homogeneous cell population model.
Similar content being viewed by others
References
Adoteye K, Banks H, Cross K, Etchyson S, Flores K, LeBlanc G, Nguyen T, Ross C, Smith E, Stemkovski M, Stokley S (2015) Statistical validation of structured population models for Daphnia magna. Math Biosci 266:73–84
Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723
Baldock AL, Ahn S, Rockne R, Johnston S, Neal M, Corwin D, Clark-Swanson K, Sterin G, Trister AD, Malone H et al (2014) Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS ONE 9(10):e99057
Banks H, Collins E, Flores K, Pershad P, Stemkovski M, Stephenson L (2017) Statistical error model comparison for logistic growth of green algae (Raphidocelis subcapitata). Appl Math Lett 64:213–222
Banks H, Sutton KL, Thompson WC, Bocharov G, Roose D, Schenkel T, Meyerhans A (2011) Estimation of cell proliferation dynamics using CFSE data. Bull Math Biol 73(1):116–150
Banks HT (2012) A functional analysis framework for modeling, estimation and control in science and engineering. CRC Press, Boca Raton
Banks HT, Barnes JH, Eberhardt A, Tran H, Wynne S (2002) Modeling and computation of propagating waves from coronary stenosis. Comput Appl Math 21:767–788
Banks HT, Botsford LW, Kappel F, Wang C (1988) Modeling and estimation in size structured population models. LCDS-CCS Report 87-13, Brown University. In: Proceedings 2nd course on mathematical ecology, (Trieste, December 8–12, 1986) pp 521–541
Banks HT, Buksas MW, Lin T (2002) Electromagnetic material interrogation using conductive interfaces and acoustic wavefronts. SIAM FR 21 Philadelphia
Banks HT, Davis JL (2007) A comparison of approximation methods for the estimation of probability distributions on parameters. Appl Numer Math 57(5–7):753–777
Banks HT, Davis JL (2008) Quantifying uncertainty in the estimation of probability distributions with confidence bands. CRSC-TR07-21, December 2007. Math Biosci Eng 5:647–667
Banks HT, Davis JL, Ernstberger SL, Hu S, Artimovich E, Dhar AK, Browdy CL (2009a) A comparison of probabilistic and stochastic formulations in modeling growth uncertainty and variability. CRSC-TR08-03, February 2008. J Biol Dyn 3:130–148
Banks HT, Davis JL, Ernstberger SL, Hu S, E, A, Dhar AK (2009b) Experimental design and estimation of growth rate distributions in size-structured shrimp populations. CRSC-TR08-20, November, 2008; Inverse Problems 095003 25, (095,003–28 pages)
Banks HT, Davis JL, Hu S (2010) A computational comparison of alternatives to including uncertainty in structured population models. CRSC-TR09-14, June, 2009; in three decades of progress in systems and contro (X. Hu, et al., eds.) pp 19–33
Banks HT, Fitzpatrick BG (1991) Estimation of growth rate distributions in size structured population models. Q Appl Math 49:215–235
Banks HT, Fitzpatrick BG, Potter LK, Zhang Y (1998) Estimation of probability distributions for individual parameters using aggregate population data. CRSC-TR98-06, January 1998; in Stochastic analysis, control, optimization, and applications, (W. McEneaney, G. Yin, and Q. Zhang, eds.) pp 353–371
Banks HT, Flores KB, Langlois CR, Serio TR, Sindi SS (2017) Estimating the rate of prion aggregate amplification in yeast with a generation and structured population model. Inverse Probl Sci Eng 1–23
Banks HT, Gibson NL (2006) Electromagnetic inverse problems involving distributions of dielectric mechanisms and parameters. CRSC-TR05-29, August 2005. Q Appl Math 64:749–795
Banks HT, Hu S, Kenz ZR, Kruse C, Shaw S, Whiteman JR, Brewin MP, Greenwald SE, Birch MJ (2013a) Material parameter estimation and hypothesis testing on a 1d viscoelastic stenosis model: methodology. CRSC-TR12-09, April, 2012; J Inverse Ill-posed Probl 21:25–57
Banks HT, Hu S, Kenz ZR, Kruse C, Shaw S, Whiteman JR, Brewin MP, Greenwald SE, Birch MJ (2013b) Model validation for a noninvasive arterial stenosis detection problem. CRSC-TR12-22, December, 2012. Math Biosci Eng 11:427–448
Banks HT, Hu S, Thompson WC (2014) Modeling and inverse problems in the presence of uncertainty. CRC Press, Boca Raton
Banks HT, Joyner ML (2017) AIC under the framework of least squares estimation. Appl Math Lett 74:33–45
Banks HT, Kenz ZR, Thompson WC (2012) A review of selected techniques in inverse problem nonparametric probability distribution estimation. CRSC-TR12-13, May 2012; J Inverse Ill-Posed Probl 429–460
Banks HT, Kunisch K (1989) Estimation techniques for distributed parameter systems. Birkhausen, Boston
Banks HT, Pinter GA (2005) A probabilistic multiscale approach to hysteresis in shear wave propagation in biotissue. CRSC-TR04-03, January 2004; SIAM. J Multiscale Model Simul 3:395–412
Banks HT, Potter LK (2004) Probabilistic methods for addressing uncertainty and variability in biological models: application to a toxicokinetic model. CRSC-TR02-27, September 2002. Mathematical Biosciences 192:193–22
Banks HT, Thompson WC, Peligero GS, Argilaguet J, Meyerhans A (2012) A division-dependent compartmental model for computing cell numbers in cfse-based lymphocyte proliferation assays. CRSC-TR12-03, January 2012. Math Biosci Eng 9:699–736
Bondiau PY, Clatz O, Sermesant M, Marcy PY, Delingette H, Frenay M, Ayache N (2008) Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging. Phys Med Biol 53(4):879
Chu J, Ducrot A, Magal P, Ruan S (2009) Hopf bifurcation in a size-structured population dynamic model with random growth. J Differ Eq 247(3):956–1000
Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-d growth of brain tumors in mr images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346
de Rioja VL, Isern N, Fort J (2016) A mathematical approach to virus therapy of glioblastomas. Biol Direct 11(1):1
Engwer C, Hillen T, Knappitsch M, Surulescu C (2015) Glioma follow white matter tracts: a multiscale dti-based model. J Math Biol 71(3):551–582
Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P (2006) Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 53(8):799–808
Gallego O (2015) Nonsurgical treatment of recurrent glioblastoma. Curr Oncol 22(4):e273
Garay T, Juhász É, Molnár E, Eisenbauer M, Czirók A, Dekan B, László V, Hoda MA, Döme B, Tímár J et al (2013) Cell migration or cytokinesis and proliferation? Revisiting the go or grow hypothesis in cancer cells in vitro. Exp Cell Res 319(20):3094–3103
Hall A, Gandar P (1995) Stochastic models for fruit growth. In: IV International symposium on computer modelling in fruit research and orchard management 416:113–120
Hathout L, Ellingson B, Pope W (2016) Modeling the efficacy of the extent of surgical resection in the setting of radiation therapy for glioblastoma. Cancer Sci 107(8):1110–1116
Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2012) ‘Go or grow’: the key to the emergence of invasion in tumour progression? Math Med Biol 29(1):49–65
Jackson PR, Juliano J, Hawkins-Daarud A, Rockne RC, Swanson KR (2015) Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice. Bull Math Biol 77(5):846–856
Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pélégrini-Issac M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med 54(3):616–624
Kohandel M, Sivaloganathan S, Oza A (2006) Mathematical modeling of ovarian cancer treatments: sequencing of surgery and chemotherapy. J Theor Biol 242(1):62–68
Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N (2010) Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14:111–125
Konukoglu E, Clatz O, Bondiau PY, Sermesant M, Delingette H, Ayache N (2007) Towards an identification of tumor growth parameters from time series of images. In: Medical image computing and computer-assisted intervention–MICCAI 2007, Springer, pp 549–556
Martínez-González A, Calvo GF, Pérez Romasanta LA, Pérez-García VM (2012) Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications. Bull Math Biol 1–22
Murray JD (2003) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, New York
Norden AD, Wen PY (2006) Glioma therapy in adults. Neurologist 12(6):279–292
Norton L, Simon R (1977) Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep 61(7):1307
Norton L, Simon R (1986) The Norton–Simon hypothesis revisited. Cancer Treat Rep 70(1):163
Onishi M, Ichikawa T, Kurozumi K, Date I (2011) Angiogenesis and invasion in glioma. Brain Tumor Pathology 28(1):13–24
Painter K, Hillen T (2013) Mathematical modelling of glioma growth: the use of diffusion tensor imaging (dti) data to predict the anisotropic pathways of cancer invasion. J Theor Biol 323:25–39
Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M (2007) Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med Biol 52(11):3291
Rockne R, Rockhill J, Mrugala M, Spence A, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord E Jr, Swanson K (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271
Rutter EM, Stepien TL, Anderies BJ, Plasencia JD, Woolf EC, Scheck AC, Turner GH, Liu Q, Frakes D, Kodibagkar V, Kuang Y, Preul MC, Kostelich EJ (2017) Mathematical analysis of glioma growth in a murine model. Sci Rep 7:2508. https://doi.org/10.1038/s41598-017-02462-0
Sirlanci M, Kang D, Fairbairn CE, Luczak SE, Pan R, Yu X, Rosen IG (2018) Estimating the distribution of random parameters in, and deconvolving the input signal to, a diffusion equation forward model for a transdermal alcohol biosensor. Submitted for Publication
Sirlanci M, Luczak S, Rosen IG (2017) Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators. In: American control conference (ACC), 2017, pp 3171–3176. IEEE
Sirlanci M, Rosen IG (2018) Estimation of the distribution of random parameters in discrete time abstract parabolic systems with unbounded input and output: Approximation and convergence. Submitted for Publication
Skipper HE (1964) Experimental evaluation of potential anticancer agents. xiii. on the criteria and kinetics associated with” curability” of experimental leukemia. Cancer Chemother Rep 35:1–111
Soong T, Chuang S (1973) Solutions of a class of random differential equations. SIAM J Appl Math 24(4):449–459
Soong TT (1973) Random differential equations in science and engineering. Elsevier, Amsterdam
Stein AM, Demuth T, Mobley D, Berens M, Sander LM (2007) A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys J 92(1):356–365
Stepien TL, Rutter EM, Kuang Y (2015) A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Math Biosci Eng 12(6):1157–1172
Swan A, Hillen T, Bowman JC, Murtha AD (2017) A patient-specific anisotropic diffusion model for brain tumour spread. Bull Math Biol. https://doi.org/10.1007/s11538-017-0271-8
Swanson K, Alvord E, Murray J (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–330
Swanson K, Alvord E, Murray J (2003) Virtual resection of gliomas: effect of extent of resection on recurrence. Math Comput Modell 37(11):1177–1190
Swanson KR, Alvord E, Murray J (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Cancer 86(1):14–18
Swanson KR, Bridge C, Murray J, Alvord EC (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216(1):1–10
Tian JP, Friedman A, Wang J, Chiocca EA (2009) Modeling the effects of resection, radiation and chemotherapy in glioblastoma. J Neurooncol 91(3):287
Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507
Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R (2002) Processing and visualization for diffusion tensor mri. Med Image Anal 6(2):93–108
Author information
Authors and Affiliations
Corresponding author
Additional information
In memory of Karl Hadeler, for his inspiring research and teaching, and dedication to mentoring.
This research was supported in part by the Air Force Office of Scientific Research under Grant Number AFOSR FA9550-15-1-0298 and in part by the National Science Foundation under NSF Grant Number DMS-0946431.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Rutter, E.M., Banks, H.T. & Flores, K.B. Estimating intratumoral heterogeneity from spatiotemporal data. J. Math. Biol. 77, 1999–2022 (2018). https://doi.org/10.1007/s00285-018-1238-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00285-018-1238-6