Advertisement

Journal of Mathematical Biology

, Volume 76, Issue 4, pp 911–944 | Cite as

Birth/birth-death processes and their computable transition probabilities with biological applications

  • Lam Si Tung HoEmail author
  • Jason Xu
  • Forrest W. Crawford
  • Vladimir N. Minin
  • Marc A. Suchard
Article

Abstract

Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computationally expensive methods such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-based inference to small systems, or indirect methods such as approximate Bayesian computation. In this paper, we introduce the birth/birth-death process, a tractable bivariate extension of the birth-death process, where rates are allowed to be nonlinear. We develop an efficient algorithm to calculate its transition probabilities using a continued fraction representation of their Laplace transforms. Next, we identify several exemplary models arising in molecular epidemiology, macro-parasite evolution, and infectious disease modeling that fall within this class, and demonstrate advantages of our proposed method over existing approaches to inference in these models. Notably, the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this class, and we emphasize that computable transition probabilities newly enable direct inference of parameters in the SIR model. We also propose a very fast method for approximating the transition probabilities under the SIR model via a novel branching process simplification, and compare it to the continued fraction representation method with application to the 17th century plague in Eyam. Although the two methods produce similar maximum a posteriori estimates, the branching process approximation fails to capture the correlation structure in the joint posterior distribution.

Keywords

Stochastic models Birth-death process Infectious disease SIR model Transition probabilities 

Mathematics Subject Classification

60J27 92D30 62F15 

Supplementary material

References

  1. Abate J, Whitt W (1992) The Fourier-series method for inverting transforms of probability distributions. Queueing Syst 10(1–2):5–87MathSciNetCrossRefzbMATHGoogle Scholar
  2. Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis, vol 4. Springer, New YorkCrossRefzbMATHGoogle Scholar
  3. Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J R Stat Soc Ser B (Stat Methodol) 72(3):269–342MathSciNetCrossRefzbMATHGoogle Scholar
  4. Blum MG, Tran VC (2010) HIV with contact tracing: a case study in approximate Bayesian computation. Biostatistics 11(4):644–660CrossRefGoogle Scholar
  5. Brauer F (2008) Compartmental models in epidemiology. Mathematical epidemiology. Springer, Berlin, pp 19–79CrossRefGoogle Scholar
  6. Britton T (2010) Stochastic epidemic models: a survey. Math Biosci 225(1):24–35MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cauchemez S, Ferguson N (2008) Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London. J R Soc Interface 5(25):885–897CrossRefGoogle Scholar
  8. Correia-Gomes C, Economou T, Bailey T, Brazdil P, Alban L, Niza-Ribeiro J (2014) Transmission parameters estimated for salmonella typhimurium in swine using susceptible-infectious-resistant models and a bayesian approach. BMC Vet Res 10(1):101CrossRefGoogle Scholar
  9. Craviotto C, Jones WB, Thron W (1993) A survey of truncation error analysis for Padé and continued fraction approximants. Acta Appl Math 33(2–3):211–272MathSciNetCrossRefzbMATHGoogle Scholar
  10. Crawford FW, Suchard MA (2012) Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution. J Math Biol 65(3):553–580MathSciNetCrossRefzbMATHGoogle Scholar
  11. Crawford FW, Minin VN, Suchard MA (2014) Estimation for general birth-death processes. J Am Stat Assoc 109(506):730–747MathSciNetCrossRefzbMATHGoogle Scholar
  12. Crawford FW, Weiss RE, Suchard MA (2015) Sex, lies, and self-reported counts: Bayesian mixture models for longitudinal heaped count data via birth-death processes. Ann Appl Stat 9:572–596MathSciNetCrossRefzbMATHGoogle Scholar
  13. Crawford FW, Stutz TC, Lange K (2016) Coupling bounds for approximating birth-death processes by truncation. Stat Prob Lett 109:30–38MathSciNetCrossRefzbMATHGoogle Scholar
  14. Csilléry K, Blum MG, Gaggiotti OE, François O (2010) Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol 25(7):410–418CrossRefGoogle Scholar
  15. Doss CR, Suchard MA, Holmes I, Kato-Maeda M, Minin VN (2013) Fitting birth-death processes to panel data with applications to bacterial DNA fingerprinting. Ann Appl Stat 7(4):2315–2335MathSciNetCrossRefzbMATHGoogle Scholar
  16. Drovandi CC, Pettitt AN (2011) Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67(1):225–233MathSciNetCrossRefzbMATHGoogle Scholar
  17. Dukic V, Lopes HF, Polson NG (2012) Tracking epidemics with Google flu trends data and a state-space SEIR model. J Am Stat Assoc 107(500):1410–1426MathSciNetCrossRefzbMATHGoogle Scholar
  18. Earn DJ (2008) A light introduction to modelling recurrent epidemics. Mathematical epidemiology. Springer, Berlin, pp 3–17CrossRefGoogle Scholar
  19. Ephraim Y, Mark BL (2012) Bivariate Markov processes and their estimation. Found Trends Signal Process 6(1):1–95CrossRefzbMATHGoogle Scholar
  20. Feller W (1968) An introduction to probability theory and its applications, vol 1. Wiley, HobokenzbMATHGoogle Scholar
  21. Finkenstädt B, Grenfell B (2000) Time series modelling of childhood diseases: a dynamical systems approach. J R Stat Soc Ser C (Appl Stat) 49(2):187–205MathSciNetCrossRefzbMATHGoogle Scholar
  22. Golightly A, Wilkinson DJ (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61(3):781–788MathSciNetCrossRefzbMATHGoogle Scholar
  23. Griffiths D (1972) A bivariate birth-death process which approximates to the spread of a disease involving a vector. J Appl Probab 9(1):65–75MathSciNetCrossRefzbMATHGoogle Scholar
  24. Hitchcock S (1986) Extinction probabilities in predator-prey models. J Appl Probab 23(1):1–13MathSciNetCrossRefzbMATHGoogle Scholar
  25. Iglehart DL (1964) Multivariate competition processes. Ann Math Stat 35(1):350–361MathSciNetCrossRefzbMATHGoogle Scholar
  26. Ionides E, Bretó C, King A (2006) Inference for nonlinear dynamical systems. Proc Natl Acad Sci USA 103(49):18,438–18,443Google Scholar
  27. Ionides EL, Nguyen D, Atchadé Y, Stoev S, King AA (2015) Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proce Natl Acad Sci USA 112(3):719–724MathSciNetCrossRefzbMATHGoogle Scholar
  28. Jahnke T, Huisinga W (2007) Solving the chemical master equation for monomolecular reaction systems analytically. J Math Biol 54(1):1–26MathSciNetCrossRefzbMATHGoogle Scholar
  29. Karev GP, Berezovskaya FS, Koonin EV (2005) Modeling genome evolution with a diffusion approximation of a birth-and-death process. Bioinformatics 21(Suppl 3):iii12–iii19CrossRefGoogle Scholar
  30. Keeling M, Ross J (2008) On methods for studying stochastic disease dynamics. J R Soc Interface 5(19):171–181CrossRefGoogle Scholar
  31. Kermack W, McKendrick A (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser A 115(772):700–721CrossRefzbMATHGoogle Scholar
  32. Lentz WJ (1976) Generating Bessel functions in Mie scattering calculations using continued fractions. Appl Opt 15(3):668–671CrossRefGoogle Scholar
  33. Levin D (1973) Development of non-linear transformations for improving convergence of sequences. Int J Comput Math 3(1–4):371–388MathSciNetzbMATHGoogle Scholar
  34. Martin AD, Quinn KM, Park JH (2011) MCMCpack: Markov chain Monte Carlo in R. J Stat Softw 42(9):22. http://www.jstatsoft.org/v42/i09/
  35. McKendrick A (1926) Applications of mathematics to medical problems. Proce Edinb Math Soc 44:98–130CrossRefGoogle Scholar
  36. McKinley T, Cook AR, Deardon R (2009) Inference in epidemic models without likelihoods. Int J Biostat 5(1):1557–4679MathSciNetCrossRefGoogle Scholar
  37. Moler C, Loan C (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev 45:3–49MathSciNetCrossRefzbMATHGoogle Scholar
  38. Murphy J, O’Donohoe M (1975) Some properties of continued fractions with applications in Markov processes. IMA J Appl Math 16(1):57–71MathSciNetCrossRefzbMATHGoogle Scholar
  39. Novozhilov AS, Karev GP, Koonin EV (2006) Biological applications of the theory of birth-and-death processes. Brief Bioinform 7(1):70–85CrossRefGoogle Scholar
  40. Owen J, Wilkinson DJ, Gillespie CS (2015) Scalable inference for Markov processes with intractable likelihoods. Stat Comput 25(1):145–156MathSciNetCrossRefzbMATHGoogle Scholar
  41. Rabier CE, Ta T, Ané C (2014) Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. Mol Biol Evol 31(3):750–762CrossRefGoogle Scholar
  42. Raggett G (1982) A stochastic model of the Eyam plague. J Appl Stat 9(2):212–225CrossRefzbMATHGoogle Scholar
  43. Renshaw E (2011) Stochastic population processes: analysis, approximations, simulations. Oxford University Press, OxfordCrossRefzbMATHGoogle Scholar
  44. Reuter GEH (1957) Denumerable Markov processes and the associated contraction semigroups on l. Acta Math 97(1):1–46MathSciNetCrossRefzbMATHGoogle Scholar
  45. Reuter GEH (1961) Competition processes. In: Proc. 4th Berkeley Symp. Math. Statist. Prob, vol 2, pp 421–430Google Scholar
  46. Riley S, Donnelly CA, Ferguson NM (2003) Robust parameter estimation techniques for stochastic within-host macroparasite models. J Theor Biol 225(4):419–430MathSciNetCrossRefGoogle Scholar
  47. Robert CP, Cornuet JM, Marin JM, Pillai NS (2011) Lack of confidence in approximate Bayesian computation model choice. Proc Natl Acad Sci 108(37):15,112–15,117Google Scholar
  48. Rosenberg NA, Tsolaki AG, Tanaka MM (2003) Estimating change rates of genetic markers using serial samples: applications to the transposon IS6110 in Mycobacterium tuberculosis. Theor Popul Biol 63(4):347–363CrossRefzbMATHGoogle Scholar
  49. Schranz HW, Yap VB, Easteal S, Knight R, Huttley GA (2008) Pathological rate matrices: from primates to pathogens. BMC Bioinform 9(1):550CrossRefGoogle Scholar
  50. Sidje RB (1998) Expokit: a software package for computing matrix exponentials. ACM Trans Math Softw (TOMS) 24(1):130–156CrossRefzbMATHGoogle Scholar
  51. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C (2013) Approximate Bayesian computation. PLoS Comput Biol 9(1):e1002,803Google Scholar
  52. Thompson I, Barnett A (1986) Coulomb and Bessel functions of complex arguments and order. J Comput Phys 64(2):490–509MathSciNetCrossRefzbMATHGoogle Scholar
  53. van den Eshof J, Hochbruck M (2006) Preconditioning lanczos approximations to the matrix exponential. SIAM J Sci Comput 27(4):1438–1457MathSciNetCrossRefzbMATHGoogle Scholar
  54. Xu J, Guttorp P, Kato-Maeda M, Minin VN (2015) Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements. Biometrics 71(4):1009–1021MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lam Si Tung Ho
    • 1
    Email author
  • Jason Xu
    • 2
  • Forrest W. Crawford
    • 3
  • Vladimir N. Minin
    • 4
  • Marc A. Suchard
    • 5
  1. 1.Department of BiostatisticsUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of BiomathematicsUniversity of California, Los AngelesLos AngelesUSA
  3. 3.Department of BiostatisticsYale UniversityNew HavenUSA
  4. 4.Departments of Statistics and BiologyUniversity of WashingtonSeattleUSA
  5. 5.Departments of Biomathematics, Biostatistics and Human GeneticsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations