Advertisement

Journal of Mathematical Biology

, Volume 75, Issue 6–7, pp 1487–1515 | Cite as

Dynamic flux balance analysis with nonlinear objective function

  • Xiao Zhao
  • Stephan Noack
  • Wolfgang Wiechert
  • Eric von Lieres
Article
  • 507 Downloads

Abstract

Dynamic flux balance analysis (DFBA) extends flux balance analysis and enables the combined simulation of both intracellular and extracellular environments of microbial cultivation processes. A DFBA model contains two coupled parts, a dynamic part at the upper level (extracellular environment) and an optimization part at the lower level (intracellular environment). Both parts are coupled through substrate uptake and product secretion rates. This work proposes a Karush–Kuhn–Tucker condition based solution approach for DFBA models, which have a nonlinear objective function in the lower-level part. To solve this class of DFBA models an extreme-ray-based reformulation is proposed to ensure certain regularity of the lower-level optimization problem. The method is introduced by utilizing two simple example networks and then applied to a realistic model of central carbon metabolism of wild-type Corynebacterium glutamicum.

Keywords

Dynamic flux balance analysis Ordinary differential equations with embedded optimization Extreme pathway analysis Karush–Kuhn–Tucker conditions 

Mathematics Subject Classification

92B05 34A38 90C30 90C46 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from Bioeconomy Science Center (BioSC, Grant No. 005-1304-0001) in Germany and the German Federal Ministry of Education and Research (BMBF, Grant. No. 031L0015). Xiao Zhao would like to thank his colleagues Jannick Kappelmann for fruitful discussions on flux balance analysis and Ralf Hannemann-Tamas from RWTH Aachen University for the discussion of ODEO and the KKT-based solution method.

References

  1. Caboussat A, Landry C (2008) A second order scheme for solving optimization-constrained differential equations with discontinuities. In: Kunisch K, Of G, Steinbach O (eds) Numerical mathematics and advanced applications. Springer, Berlin, pp 761–768CrossRefGoogle Scholar
  2. Caboussat A, Landry C, Rappaz J (2010) Optimization problem coupled with differential equations: a numerical algorithm mixing an interior-point method and event detection. J Optim Theory Appl 147(1):141–156MathSciNetCrossRefMATHGoogle Scholar
  3. Dieci L, Lopez L (2012) A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side. J Comput Appl Math 236(16):3967–3991MathSciNetCrossRefMATHGoogle Scholar
  4. Droste P, Miebach S, Niedenfuehr S, Wiechert W, Noeh K (2011) Visualizing multi-omics data in metabolic networks with the software omix—a case study. Biosystems 105(2, SI):154–161CrossRefGoogle Scholar
  5. Edwards J, Palsson B (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97(10):5528–5533CrossRefGoogle Scholar
  6. Gill P, Murray W, Saunders M (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131MathSciNetCrossRefMATHGoogle Scholar
  7. Gomez J, Höffner K, Barton P (2014) DFBAlab: a fast and reliable matlab code for dynamic flux balance analysis. BMC Bioinf 15(1):1–10CrossRefGoogle Scholar
  8. Harwood S, Höffner K, Barton P (2016) Efficient solution of ordinary differential equations with a parametric lexicographic linear program embedded. Numer Math 133(4):623–653MathSciNetCrossRefMATHGoogle Scholar
  9. Hjersted J, Henson M (2006) Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Biotechnol Prog 22(5):1239–1248CrossRefGoogle Scholar
  10. Hoeffner K, Harwood S, Barton P (2013) A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng 110(3):792–802CrossRefGoogle Scholar
  11. Holmström K (1997) TOMLAB—an environment for solving optimization problems in matlab. Proc Nordic Matlab Conf 97:27–28Google Scholar
  12. Joy J, Kremling A (2010) Study of the growth of Escherichia coli on mixed substrates using dynamic flux balance analysis. In: 11th IFAC symposium on computer applications in biotechnology, pp 401–406Google Scholar
  13. Kauffman K, Prakash P, Edwards J (2003) Advances in flux balance analysis. Curr Opin Biotech 14(5):491–496CrossRefGoogle Scholar
  14. Klamt S, Stelling J (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol 21(2):64–69CrossRefGoogle Scholar
  15. Kompala D, Ramkrishna D, Tsao G (1984) Cybernetic modeling of microbial-growth on multiple substrates. Biotechnol Bioeng 26(11):1272–1281CrossRefGoogle Scholar
  16. Kyparisis J (1985) On uniqueness of Kuhn–Tucker multipliers in nonlinear programming. Math Program 32(2):242–246MathSciNetCrossRefMATHGoogle Scholar
  17. Landry C, Caboussat A, Hairer E (2009) Solving optimization-constrained differential equations with discontinuity points, with application to atmospheric chemistry. SIAM J Sci Comput 31(5):3806–3826MathSciNetCrossRefMATHGoogle Scholar
  18. Lisha K, Sarkar D (2014) Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production. Bioproc Biosyst Eng 37(4):617–627CrossRefGoogle Scholar
  19. Mahadevan R, Edwards J, Doyle F (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340CrossRefGoogle Scholar
  20. Mangasarian F (1967) The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J Math Anal Appl 17:37–47MathSciNetCrossRefMATHGoogle Scholar
  21. Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering, SpringerGoogle Scholar
  22. Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, New YorkCrossRefGoogle Scholar
  23. Papin J, Stelling J, Price N, Klamt S, Schuster S, Palsson B (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400–5CrossRefGoogle Scholar
  24. Peterson D (1973) A review of constraint qualifications in finite-dimensional spaces. SIAM Rev 15:639–654MathSciNetCrossRefGoogle Scholar
  25. Raghunathan A, Perez-Correa J, Biegler L (2003) Data reconciliation and parameter estimation in flux-balance analysis. Biotechnol Bioeng 84(6):700–709CrossRefGoogle Scholar
  26. Ramakrishna R, Edwards J, McCulloch A, Palsson B (2001) Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am J Physiol Regul Integr Comp Physiol 280(3):695–704Google Scholar
  27. Schrijver A (1986) Theory of linear and integer programming. Wiley, New YorkMATHGoogle Scholar
  28. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3(1):119Google Scholar
  29. Schuster S, Hilgetag C, Woods J, Fell D (2002) Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J Math Biol 45(2):153–181MathSciNetCrossRefMATHGoogle Scholar
  30. Shampine L, Reichelt M (1997) The MATLAB ODE suite. SIAM J Sci Comput 18(1):1–22MathSciNetCrossRefMATHGoogle Scholar
  31. Stephanopoulos G, Aristidou A, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, WalthamGoogle Scholar
  32. Vangulik W, Heijnen J (1995) A metabolic network stoichiometry analysis of microbial-growth and product formation. Biotechnol Bioeng 48(6):681–698CrossRefGoogle Scholar
  33. Wiechert W, Nöh K (2013) Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotech 24(6):979–986CrossRefGoogle Scholar
  34. Zelle E, Nöh K, Wiechert W (2015) Corynebacterium glutamicum: from systems biology to biotechnological applications. In: Burkowski A (ed) Growth and production capabilities of corynebacterium glutamicum: Interrogating a genome-scale metabolic network model. Horizon Press, Far Hills, pp 39–54Google Scholar
  35. Zolotykh N (2012) New modification of the double description method for constructing the skeleton of a polyhedral cone. Comp Math Math Phys 52(1):146–156MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.IBG-1, Biotechnology, Forschungszentrum Juelich GmbHJuelichGermany

Personalised recommendations