Journal of Mathematical Biology

, Volume 75, Issue 6–7, pp 1411–1462 | Cite as

Normal and pathological dynamics of platelets in humans

  • Gabriel P. Langlois
  • Morgan Craig
  • Antony R. Humphries
  • Michael C. Mackey
  • Joseph M. Mahaffy
  • Jacques Bélair
  • Thibault Moulin
  • Sean R. Sinclair
  • Liangliang Wang
Article

Abstract

We develop a mathematical model of platelet, megakaryocyte, and thrombopoietin dynamics in humans. We show that there is a single stationary solution that can undergo a Hopf bifurcation, and use this information to investigate both normal and pathological platelet production, specifically cyclic thrombocytopenia. Carefully estimating model parameters from laboratory and clinical data, we then argue that a subset of parameters are involved in the genesis of cyclic thrombocytopenia based on clinical information. We provide model fits to the existing data for both platelet counts and thrombopoietin levels by changing four parameters that have physiological correlates. Our results indicate that the primary change in cyclic thrombocytopenia is an interference with, or destruction of, the thrombopoietin receptor with secondary changes in other processes, including immune-mediated destruction of platelets and megakaryocyte deficiency and failure in platelet production. This study contributes to the understanding of the origin of cyclic thrombocytopenia as well as extending the modeling of thrombopoiesis.

Keywords

Platelet regulation dynamics Thrombopoiesis Megakaryopoiesis Cyclic thrombocytopenia Dynamic diseases Delay differential equations 

Mathematics Subject Classification

37N25 92B99 92C30 37G15 

Notes

Acknowledgements

This research was supported by the NSERC (National Sciences and Engineering Research Council) of Canada through Discovery grants to JB, ARH, and MCM, and PGS-D program to MC. SRS thanks McGill University for a Science Undegraduate Research Award. GPL and MCM are especially grateful to Dr. Jayson Potts (UBC) for his initial contact that prompted the initiation of this research. We thank Prof. Jiguo Cao (SFU) for introducing us to LW.

References

  1. Apostu R, Mackey MC (2008) Understanding cyclical thrombocytopenia: a mathematical modeling approach. J Theor Biol 251(2):297–316MathSciNetCrossRefGoogle Scholar
  2. Aster RH (1966) Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytopenia. J Clin Invest 45(5):645CrossRefGoogle Scholar
  3. Bélair J, Mackey MC (1987) A model for the regulation of mammalian platelet production. Ann N Y Acad Sci 504(1):280–282CrossRefGoogle Scholar
  4. Bellen A, Zennaro M (2003) Numerical methods for delay differential equations. Oxford University Press, LondonCrossRefMATHGoogle Scholar
  5. Bellen A, Guglielmi N, Maset S (2006) Numerical methods for delay models in biomathematics. In: Quarteroni A, Formaggia L, Veneziani A (eds) Complex systems in biomedicine. Springer, Milan, pp 147–185CrossRefGoogle Scholar
  6. Bellen A, Maset S, Zennaro M, Guglielmi N (2009) Recent trends in the numerical solution of retarded functional differential equations. Acta Numer 18:1–110MathSciNetCrossRefMATHGoogle Scholar
  7. Bernard S, Bélair J, Mackey MC (2003a) Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J Theor Biol 223(3):283–298MathSciNetCrossRefGoogle Scholar
  8. Bernard S, Pujo-Menjouet L, Mackey MC (2003b) Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys J 84(5):3414–3424CrossRefGoogle Scholar
  9. Bruin M, Tijssen MR, Bierings M, de Haas M (2005) Juvenile cyclic amegakaryocytic thrombocytopenia: a novel entity. J Pediatr Hematol Oncol 27(3):148–152CrossRefGoogle Scholar
  10. Cohen T, Cooney DP (1974) Cyclic thrombocytopenia. Case report and review of literature. Scand J Haematol 12:9–17CrossRefGoogle Scholar
  11. Colijn C, Mackey MC (2005a) A mathematical model of hematopoiesis-I. Periodic chronic myelogenous leukemia. J Theor Biol 237(2):117–132MathSciNetCrossRefGoogle Scholar
  12. Colijn C, Mackey MC (2005b) A mathematical model of hematopoiesis-II. Cyclical neutropenia. J Theor Biol 237(2):133–146MathSciNetCrossRefGoogle Scholar
  13. Colijn C, Mackey MC (2007) Bifurcation and bistability in a model of hematopoietic regulation. SIAM J Appl Dyn Syst 6(2):378–394MathSciNetCrossRefMATHGoogle Scholar
  14. Colijn C, Dale DC, Foley C, Mackey MC (2006) Observations on the pathophysiology and mechanisms for cyclic neutropenia. Math Model Nat Phenom 1:45–68MathSciNetCrossRefMATHGoogle Scholar
  15. Connor DE, Joseph JE (2011) Cyclic thrombocytopenia associated with marked rebound thrombocytosis and fluctuating levels of endogenous thrombopoietin and reticulated platelets: a case report. Am J Hematol [Letter] 87:120–122CrossRefGoogle Scholar
  16. Craig M, Humphries AR, Mackey MC (2016) A mathematical model of granulopoiesis incorporating the negative feedback dynamics and kinetics of G-CSF/neutrophil binding and internalisation. Bull Math Biol 78(12):2304–2357MathSciNetCrossRefMATHGoogle Scholar
  17. Cryer CW, Tavernini L (1972) The numerical solution of Volterra functional differential equations by Euler’s method. SIAM J Numer Anal 9(1):105–129MathSciNetCrossRefMATHGoogle Scholar
  18. de Sauvage FJ, Carver-Moore K, Luoh SM, Ryan A, Dowd M, Eaton DL, Moore MW (1996) Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med 183(2):651–656CrossRefGoogle Scholar
  19. Debili N, Wendling F, Cosman D, Titeux M, Florindo C, Dusanter-Fourt I, Schooley K, Methia N, Charon M, Nador R (1995) The Mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. Blood 85(2):391–401Google Scholar
  20. Engström K, Lundquist A, Söderström N (1966) Periodic thrombocytopenia or tidal platelet dysgenesis in a man. Scand J Haematol 3(4):290–294CrossRefGoogle Scholar
  21. Finch CA, Harker LA, Cook JD (1977) Kinetics of the formed elements of human blood. Blood 50(4):699–707Google Scholar
  22. Foley C, Mackey MC (2009) Dynamic hematological disease: a review. J Math Biol 58:285–322MathSciNetCrossRefMATHGoogle Scholar
  23. Giles C (1981) The platelet count and mean platelet volume. Br J Haematol 48(1):31–37CrossRefGoogle Scholar
  24. Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, PrincetonMATHGoogle Scholar
  25. Go RS (2005) Idiopathic cyclic thrombocytopenia. Blood Rev 19(1):53–59CrossRefGoogle Scholar
  26. Grozovsky R, Hoffmeister KM, Falet H (2010) Novel clearance mechanisms of platelets. Curr Opin Hematol 17(6):585–589CrossRefGoogle Scholar
  27. Hairer E, Norsett SP, Wanner G (1993) Solving ordinary differential equations I nonstiff problems. Springer Series in Computational Mathematics, vol 8, 2nd edn. Springer, BerlinMATHGoogle Scholar
  28. Harker LA, Finch CA (1969) Thrombokinetics in man. J Clin Invest 48(6):963CrossRefGoogle Scholar
  29. Haurie C, Dale DC, Mackey MC (1998) Cyclical neutropenia and other periodic hematological diseases: a review of mechanisms and mathematical models. Blood 92:2629–2640Google Scholar
  30. Helleberg C, Taaning E, Hansen PB (1995) Cyclic thrombocytopenia successfully treated with low dose hormonal contraception. Am J Hematol 48(1):62–63CrossRefGoogle Scholar
  31. Hitchcock IS, Kaushansky K (2014) Thrombopoietin from beginning to end. Br J Haematol 165(2):259–268CrossRefGoogle Scholar
  32. Jackson CW, Brown LK, Somerville BC, Lyles SA, Look AT (1984) Two-color flow cytometric measurement of dna distributions of rat megakaryocytes in unfixed, unfractionated marrow cell suspensions. Blood 63(4):768–778Google Scholar
  33. Kaufman RM, Airo R, Pollack S, Crosby WH (1965) Circulating megakaryocytes and platelet release in the lung. Blood 26(6):720–731Google Scholar
  34. Kaushansky K (1995) Thrombopoietin: the primary regulator of platelet production. Blood 86(2):419–431Google Scholar
  35. Kaushansky K, Lichtman MA, Kipps TJ, Seligsohn U, Prchal JT, Beutler E (2012) Williams hematology, 8th edn. McGraw-Hill Higher Education, New YorkGoogle Scholar
  36. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, PrincetonMATHGoogle Scholar
  37. Kimura F, Nakamura Y, Sato K, Wakimoto N, Kato T, Tahara T, Yamada M, Nagata N, Motoyoshi K (1996) Cyclic change of cytokines in a patient with cyclic thrombocytopenia. Br J Haematol 94:171–174CrossRefGoogle Scholar
  38. Kosugi S, Tomiyama Y, Shiraga M, Kashiwagi H, Nakao H, Kanayama Y, Kurata Y, Matsuzawa Y (1994) Cyclic thrombocytopenia associated with IgM anti-GPIIb-IIIa autoantibodies. Br J Haematol 88(4):809–815CrossRefGoogle Scholar
  39. Kuter DJ (2009) Thrombopoietin and thrombopoietin mimetics in the treatment of thrombocytopenia. Annu Rev Med 60:193–206CrossRefGoogle Scholar
  40. Kuter DJ (2013) The biology of thrombopoietin and thrombopoietin receptor agonists. Prog Hematol 98(1):10–23CrossRefGoogle Scholar
  41. Kuter DJ, Greenberg SM, Rosenberg RD (1989) Analysis of megakaryocyte ploidy in rat bone marrow cultures. Blood 74(6):1952–1962Google Scholar
  42. Li J, Xia Y, Kuter DJ (1999) Interaction of thrombopoietin with the platelet c-Mpl receptor in plasma: binding, internalization, stability and pharmacokinetics. Br J Haematol 106(2):345–356CrossRefGoogle Scholar
  43. Mackey MC (2001) Cell kinetic status of haematopoietic stem cells. Cell Prolif 34(2):71–83CrossRefGoogle Scholar
  44. Mahaffy JM (1982) A test for stability of linear differential delay equations. Q Appl Math 40(2):193–202MathSciNetCrossRefMATHGoogle Scholar
  45. Mahaffy JM, Bélair MC, Mackey J (1998) Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. J Theor Biol 190(2):135–146CrossRefGoogle Scholar
  46. Majka M, Janowska-Wieczorek A, Ratajczak J, Kowalska M, Vilaire G, Pan Z, Honczarenko M, Marquez L, Poncz M, Ratajczak M (2000) Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood 96(13):4142–4151Google Scholar
  47. Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain Monte Carlo without likelihoods. Proc Natl Acad Sci 100(26):15,324–15,328CrossRefGoogle Scholar
  48. Maset S, Torelli L, Vermiglio R (2005) Runge Kutta methods for retarded functional differential equations. Math Models Methods Appl Sci 15(08):1203–1251MathSciNetCrossRefMATHGoogle Scholar
  49. Mason KD, Carpinelli MR, Fletcher JT, Collinge JE, Hilton AA, Ellis S, Kelly PN, Ekert PG, Metcalf D, Roberts AW, Huang DCS, Kile BT (2007) Programmed anuclear cell death delimits platelet life span. Cell 128(6):1173–1186CrossRefGoogle Scholar
  50. Mathworks (2015) MATLAB 2015a. Mathworks, Natick, MassachusettsGoogle Scholar
  51. McClatchey KD (2002) Clinical laboratory medicine. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  52. Morley A (1969) A platelet cycle in normal individuals. Australas Ann Med 18(2):127CrossRefGoogle Scholar
  53. Nakeff A (1977) Colony-forming unit, megakaryote (CFU-M): its use in elucidating the kinetics and humoral control of the megakaryocytic committed progenitor cell compartment. In: Experimental hematology today. Springer, New York, pp 111–123Google Scholar
  54. Nakeff A, Ingram M (1970) Platelet count: volume relationships in four mammalian species. J Appl Physiol 28(4):530–533Google Scholar
  55. Nomura S, Ogami K, Kawamura K, Tsukamoto I, Kudo Y, Kanakura Y, Kitamura Y, Miyazaki H, Kato T (1997) Cellular localization of thrombopoietin mRNA in the liver by in situ hybridization. Exp Hematol 25(7):565–572Google Scholar
  56. Pedersen N (1978) Occurrence of megakaryocytes in various vessels and their retention in the pulmonary capillaries in man. Scand J Haematol 21(5):369–375CrossRefGoogle Scholar
  57. Qian S, Fu F, Li W, Chen Q, de Sauvage FJ (1998) Primary role of the liver in thrombopoietin production shown by tissue-specific knockout. Blood 92(6):2189–2191Google Scholar
  58. Rocha R, Horstman L, Ahn YS, Mylvaganam R, Harrington WJ (1991) Danazol therapy for cyclic thrombocytopenia. Am J Hematol 36(2):140–143CrossRefGoogle Scholar
  59. Santillan M, Mahaffy JM, Bélair J, Mackey MC (2000) Regulation of platelet production: the normal response to perturbation and cyclical platelet disease. J Theor Biol 206(4):585–603CrossRefGoogle Scholar
  60. Scholz M, Gross A, Loeffler M (2010) A biomathematical model of human thrombopoiesis under chemotherapy. J Theor Biol 264(2):287–300CrossRefGoogle Scholar
  61. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533CrossRefGoogle Scholar
  62. Skoog WA, Lawrence JS, Adams WS (1957) A metabolic study of a patient with idiopathic cyclical thrombocytopenic purpura. Blood 12(9):844–856Google Scholar
  63. Swinburne J, Mackey MC (2000) Cyclical thrombocytopenia: characterisation by spectral analysis and a review. J Theor Med 2:81–91CrossRefMATHGoogle Scholar
  64. Tamada Feese T M D, Kato Y, Maeda Y, Hirose M, Matsukura Y, Shigematsu H, Muto T, Matsumoto A, Watarai H et al (2004) Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment. PNAS 101(7):1816–1821CrossRefGoogle Scholar
  65. Tavernini L (1971) One-step methods for the numerical solution of Volterra functional differential equations. SIAM J Numer Anal 8(4):786–795MathSciNetCrossRefMATHGoogle Scholar
  66. Tomer A, Harker L (1996) Measurements of in vivo megakaryocytopoiesis: studies in nonhuman primates and patients. Stem Cells 14(S1):18–30CrossRefGoogle Scholar
  67. Trowbridge EA, Martin JF, Slater DN (1982) Evidence for a theory of physical fragmentation of megakaryocytes, implying that all platelets are produced in the pulmonary circulation. Thromb Res 28(4):461–475CrossRefGoogle Scholar
  68. Tsan MF (1984) Kinetics and distribution of platelets in man. Am J Hematol 17(1):97–104CrossRefGoogle Scholar
  69. von Schulthess GK, Gessner U (1986) Oscillating platelet counts in healthy individuals: experimental investigation and quantitative evaluation of thrombocytopoietic feedback control. Scand J Haematol 36(5):473–479CrossRefGoogle Scholar
  70. Wang B, Nichol JL, Sullivan JT (2004) Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin Pharmacol Ther 76(6):628–638CrossRefGoogle Scholar
  71. Wang YMC, Krzyzanski W, Doshi S, Xiao JJ, Perez-Ruixo JJ, Chow AT (2010) Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J 12(4):729–740CrossRefGoogle Scholar
  72. Wichmann HE, Gerhardts MD, Spechtmeyer H, Gross R (1979) A mathematical model of thrombopoiesis in the rat. Cell Tissue Kinet 12:551–567Google Scholar
  73. Wichmann HE, Loeffler M (1985) Mathematical modeling of cell proliferation: stem cell regulation in hemopoiesis. CRC Press, Boca RatonGoogle Scholar
  74. Wilkinson T, Firkin B (1966) Idiopathic cyclical acute thrombocytopenic purpura. Med J Aust 1(6):217Google Scholar
  75. Yanabu M, Nomura S, Fukuroi T, Kawakatsu T, Kido H, Yamaguchi K, Suzuki M, Kokawa T, Yasunaga K (1993) Periodic production of antiplatelet autoantibody directed against GPIIIa in cyclic thrombocytopenia. Acta Haematol 89(3):155–159CrossRefGoogle Scholar
  76. Zauli G, Vitale M, Falcieri E, Gibellini D, Bassini A, Celeghini C, Columbaro M, Capitani S (1997) In vitro senescence and apoptotic cell death of human megakaryocytes. Blood 90(6):2234–2243Google Scholar
  77. Zent CS, Ratajczak J, Ratajczak MZ, Anastasi J, Hoffman PC, Gewirtz AM (1999) Relationship between megakaryocyte mass and serum thrombopoietin levels as revealed by a case of cyclic amegakaryocytic thrombocytopenic purpura. Br J Haematol 105(2):452–458CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Gabriel P. Langlois
    • 1
  • Morgan Craig
    • 2
  • Antony R. Humphries
    • 3
  • Michael C. Mackey
    • 4
  • Joseph M. Mahaffy
    • 5
  • Jacques Bélair
    • 6
  • Thibault Moulin
    • 7
  • Sean R. Sinclair
    • 3
  • Liangliang Wang
    • 8
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Program for Evolutionary DynamicsHarvard UniversityCambridgeUSA
  3. 3.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  4. 4.Department of Mathematics, Physics, and PhysiologyMcGill UniversityMontrealCanada
  5. 5.Department of Mathematical SciencesSan Diego State UniversitySan DiegoUSA
  6. 6.Département de mathématiques et de statistiqueUniversité de MontréalMontrealCanada
  7. 7.Laboratoire Chrono-EnvironnementUniversité de Bourgogne Franche-ComtéBesançonFrance
  8. 8.Department of Statistics and Actuarial ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations