Journal of Mathematical Biology

, Volume 75, Issue 6–7, pp 1349–1380 | Cite as

Optimal resource allocation enables mathematical exploration of microbial metabolic configurations

Article

Abstract

Central to the functioning of any living cell, the metabolic network is a complex network of biochemical reactions. It may also be viewed as an elaborate production system, integrating a diversity of internal and external signals in order to efficiently produce the energy and the biochemical precursors to ensure all cellular functions. Even in simple organisms like bacteria, it shows a striking level of coordination, adapting to very different growth media. Constraint-based models constitute an efficient mathematical framework to compute optimal metabolic configurations, at the scale of a whole genome. Combining the constraint-based approach “Resource Balance Analysis” with combinatorial optimization techniques, we propose a general method to explore these configurations, based on the inference of logical rules governing the activation of metabolic fluxes in response to diverse extracellular media. Using the concept of partial Boolean functions, we notably introduce a novel tractable algorithm to infer monotone Boolean functions on a minimal support. Monotonicity seems particularly relevant in this context, since the orderliness exhibited by the metabolic network’s dynamical behavior is expected to give rise to relatively simple rules. First results are promising, as the application of the method on Bacillus subtilis central carbon metabolism allows to recover known regulations as well as to investigate lesser known parts of the global regulatory network.

Keywords

Bacterial metabolic network Systems biology Partial Boolean function Monotone Boolean function Resource Balance Analysis Central carbon metabolism 

Mathematics Subject Classification

90C27 92B05 92-08 94C10 

References

  1. Berge C (1989) Hypergraphs: combinatorics of finite sets. North-Holland Mathematical Library, vol 45. Elsevier, AmsterdamGoogle Scholar
  2. Boros E, Horiyama T, Ibaraki T, Makino K, Yagiura M (2003) Finding essential attributes from binary data. Ann Math Artif Intell 39:223–257MathSciNetCrossRefMATHGoogle Scholar
  3. Buescher J, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn R, Le Chat L, Lecointe F et al (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335(6072):1099–1103CrossRefGoogle Scholar
  4. Chaves M, Tournier L, Gouzé JL (2010) Comparing Boolean and piecewise affine differential models for genetic networks. Acta Biotheor 58:217–232CrossRefGoogle Scholar
  5. Covert M, Schilling C, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213(1):73–88CrossRefGoogle Scholar
  6. Crama Y, Hammer P (2011) Boolean functions, theory, algorithms and applications. Cambridge University Press, New YorkCrossRefMATHGoogle Scholar
  7. Crama Y, Hammer P, Ibaraki T (1988) Cause-effect relationships and partially defined Boolean functions. Ann Oper Res 16:299–326MathSciNetCrossRefMATHGoogle Scholar
  8. Eiter T, Makino K, Gottlob G (2008) Computational aspects of monotone dualization: a brief survey. Discrete Appl Math 156:2035–2049MathSciNetCrossRefMATHGoogle Scholar
  9. Fredman M, Khachiyan L (1996) On the complexity of dualization of monotone disjunctive normal forms. J Algorithms 21:618–628MathSciNetCrossRefMATHGoogle Scholar
  10. Fujita Y (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem 73(2):245–259CrossRefGoogle Scholar
  11. Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P, Bessières P, Aymerich S, Fromion V (2008) Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis. BMC Syst Biol 2:20CrossRefGoogle Scholar
  12. Goelzer A, Fromion V, Scorletti G (2009) Cell design in bacteria as a convex optimization problem. In: Proceedings of the 48th IEEE conference on decision and control (CDC’09), pp 4517–4522Google Scholar
  13. Goelzer A, Fromion V, Scorletti G (2011) Cell design in bacteria as a convex optimization problem. Automatica 47(6):1210–1218MathSciNetCrossRefMATHGoogle Scholar
  14. Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, Nolker R, Mariadassou M, Aymerich S, Hecker M, Noirot P, Becher D, Fromion V (2015) Quantitative prediction of genome-wide resource allocation in bacteria. Metab Eng 32:232–243CrossRefGoogle Scholar
  15. Gurvich V, Khachiyan L (1999) On generating the irredundant conjunctive and disjunctive normal forms of monotone Boolean functions. Discrete Appl Math 96:363–373MathSciNetCrossRefMATHGoogle Scholar
  16. Hartwell L, Hopfield J, Leibler S, Murray A (1999) From molecular to modular cell biology. Nature 402:C47–C52CrossRefGoogle Scholar
  17. John G, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In: Machine learning: proceedings of the eleventh international conference, pp 121–129Google Scholar
  18. Jones D (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205(1):25–44MathSciNetCrossRefGoogle Scholar
  19. Korshunov A (2003) Monotone Boolean functions. Russ Math Surv 58(5):929–1001MathSciNetCrossRefMATHGoogle Scholar
  20. Meyer F, Jules M, Mehne F, Le Coq D, Landmann J, Görke B, Aymerich S, Stülke J (2011) Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway. J Bacteriol 193(24):6939–6949CrossRefGoogle Scholar
  21. Monod J (1958) Recherches sur la croissance des cultures bactériennes, 2nd edn. Hermann, ParisGoogle Scholar
  22. Muñoz M, Ponce E (2003) Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol B Biochem Mol Biol 135(2):197–218CrossRefGoogle Scholar
  23. Murakami K, Uno T (2014) Efficient algorithms for dualizing large-scale hypergraphs. Discrete Appl Math 170:83–94MathSciNetCrossRefMATHGoogle Scholar
  24. Nemhauser G, Wolsey L (1989) Integer programming. In: Nemhauser G, Rinooy Kan A, Todd M (eds) Optimization, handbooks in operations research and management science, vol 1. Elsevier (North-Holland), Amsterdam, pp 447–527Google Scholar
  25. Orth J, Thiele I, Palsson B (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248CrossRefGoogle Scholar
  26. Sonenshein A (2007) Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5(12):917–927CrossRefGoogle Scholar
  27. Steinway S, Biggs M, Loughran T Jr, Papin J, Albert R (2015) Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput Biol 11(6):e1004338CrossRefGoogle Scholar
  28. Wiedemann D (1991) A computation of the eighth Dedekind number. Order 8:5–6MathSciNetCrossRefMATHGoogle Scholar
  29. Zuev Y (1978) Approximation of a partial Boolean function by a monotonic Boolean function. USSR Comput Math Math Phys 18(6):212–218CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.MaIAGE INRA, Université Paris-SaclayJouy-en-JosasFrance

Personalised recommendations