Skip to main content
Log in

A Bayesian estimation approach for the mortality in a stage-structured demographic model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Control interventions in sustainable pest management schemes are set according to the phenology and the population abundance of the pests. This information can be obtained using suitable mathematical models that describe the population dynamics based on individual life history responses to environmental conditions and resource availability. These responses are described by development, fecundity and survival rate functions, which can be estimated from laboratory experiments. If experimental data are not available, data on field population dynamics can be used for their estimation. This is the case of the extrinsic mortality term that appears in the mortality rate function due to biotic factors. We propose a Bayesian approach to estimate the probability density functions of the parameters in the extrinsic mortality rate function, starting from data on population abundance. The method investigates the time variability in the mortality parameters by comparing simulated and observed trajectories. The grape berry moth, a pest of great importance in European vineyards, has been considered as a case study. Simulated data have been considered to evaluate the convergence of the algorithm, while field data have been used to obtain estimates of the mortality for the grape berry moth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baumgärtner J, Baronio P (1988) Modello fenologico di volo di Lobesia botrana Den. et Schiff. (Lep. Tortricidae) relativo alla situazione ambientale della Emilia-Romagna. Bollettino dell’Istituto di Entomologia. ‘Guido Grandi’ Dell’Università di Bologna 43:157–170

    Google Scholar 

  • Bieri M, Baumgärtner J, Bianchi G, Delucchi V, Von Arx R (1983) Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties. Mitt Schweiz Entomol Ges 56:163–171

    Google Scholar 

  • Briolini G, Di Cola G, Gilioli G (1997) Stochastic model for population development of L. botrana (Den. et Schiff.). IOBC/WPRS Bull 21:79–81

    Google Scholar 

  • Buffoni G, Pasquali S (2007) Structured population dynamics: continuous size and discontinuous stage structures. J Math Biol 54(4):555–595

    Article  MathSciNet  MATH  Google Scholar 

  • CABI Invasive Species Compendium (2014) Lobesia botrana (grape berry moth). www.cabi.org/isc/datasheet/42794. Accessed 14 July 2016

  • Di Cola G, Gilioli G, Baumgärtner J (1999) Mathematical models for age-structured population dynamics. In: Huffaker CB, Gutierrez AP (eds) Ecological entomology. Wiley, New York, pp 503–534

  • Dorazio RM (2016) Bayesian data analysis in population ecology: motivations, methods, and benefits. Popul Ecol 58:3144

    Article  Google Scholar 

  • Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid monte carlo. Phys Lett B 195(2):216–222

    Article  Google Scholar 

  • Durham GB, Gallant AR (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J Bus Econ Stat 20:297–338

    Article  MathSciNet  Google Scholar 

  • EFSA Scientific Commettee (2011) Statistical significance and biological relevance. EFSA J 9(9):2372

    Google Scholar 

  • Elerian O, Chib S, Shephard N (2001) Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69:959–993

    Article  MathSciNet  MATH  Google Scholar 

  • Gardiner CW (1994) Handbook of stochastic methods. Springer, Berlin

    Google Scholar 

  • Gilioli G, Pasquali S, Marchesini E (2016) A modelling framework for pest population dynamics and management: an application to the grape berry moth. Ecol Model 320:348–357

    Article  Google Scholar 

  • Gilioli G, Pasquali S, Ruggeri F (2008) Bayesian inference for functional response in a stochastic predator–prey system. Bull Math Biol 70:358–381

    Article  MathSciNet  MATH  Google Scholar 

  • Gilioli G, Pasquali S, Ruggeri F (2012) Nonlinear functional response parameter estimation in a stochastic predator–prey model. Math Biosci Eng 9(1):75–96

    Article  MathSciNet  MATH  Google Scholar 

  • Gillespie CS, Golightly A (2010) Bayesian inference for generalized stochastic population growth models with applications to aphids. J R Stat Soc 59(2):341–357

    Article  MathSciNet  Google Scholar 

  • Golightly A, Wilkinson D (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61:781–788

    Article  MathSciNet  MATH  Google Scholar 

  • Golightly A, Wilkinson D (2008) Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput Stat Data Anal 52:1674–1693

    Article  MathSciNet  MATH  Google Scholar 

  • Gutierrez AP, Ponti L, Cooper ML, Gilioli G, Baumgärtner J (2012) Prospective analysis of the invasive potential of the European grapevine moth L. Botrana (De. & Schiff.) in California. Agric For Entomol 14:225–238

  • Heydari J, Lawless C, Lydall DA, Wilkinson DJ (2014) Fast Bayesian parameter estimation for stochastic logistic growth models. Biosystems 122:55–72

    Article  Google Scholar 

  • Hooten MB, Wikle CK (2008) A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian collared-dove. Environ Ecol Stat 15:59–70

    Article  MathSciNet  Google Scholar 

  • Huffaker CB, Gutierrez AP (eds) (1999) Ecological entomology. Wiley, New York

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

    Article  Google Scholar 

  • Lamonica D, Herbach U, Orias F, Clément B, Charles S, Lopes C (2016a) Mechanisitc modelling of daphnid–algae dynamics within a laboratory microcosm. Ecol Model 320:213–230

    Article  Google Scholar 

  • Lamonica D, Clément B, Charles S, Lopes C (2016b) Modelling algae–duckweed interaction under chemical pressure within a laboratory microcosm. Ecotoxicol Environ Saf 128:252–265

    Article  Google Scholar 

  • Lanzarone E, Pasquali S, Mussi V, Ruggeri F (2014) Bayesian estimation of thermal conductivity and temperature profile in a homogeneous mass. Numer Heat Transf Part B Fundam 66(5):397–421

    Article  Google Scholar 

  • Marchesini E (2007) I limitatori naturali della tignoletta nell’agroecosistema vigneto. In: Anfora G et al (eds) Le tignole della vite. Agricoltura Integrata, Istituto Agrario di San Michele all’Adige, pp 40–55

  • Marchesini E, Dalla Montà L (2004) Nel Veneto quattro generazioni di tignoletta della vite. Inf Agrar 60(4):75–78

    Google Scholar 

  • Martín-Fernández L, Gilioli G, Lanzarone E, Míguez J, Pasquali S, Ruggeri F, Ruiz DP (2014) A Rao–Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator–prey system. Math Biosci Eng 11(3):573–597

    Article  MathSciNet  MATH  Google Scholar 

  • Martín-Fernández L, Lanzarone E (2015) A particle-filtering approach for real-time estimation of thermal conductivity and temperature tracking in homogeneous masses. Numer Heat Transf Part B Fundam 67(6):507–530

    Article  Google Scholar 

  • McDonald L, Manly B, Lockwood J, Logan JA (eds) (1989) Estimation and analysis of insect populations. Springer, Berlin

  • Metz JAJ, Diekmann O (eds) (1986) The dynamics of physiologically structured populations. Springer, Berlin

  • Pavan F, Floreani C, Barro P, Zandigiacomo P, Dalla Montà L (2010) Influence of generation and photoperiod on larval development of L. Botrana (Lepidoptera: Tortricidae). Environ Entomol 39(5):1652–1658

    Article  Google Scholar 

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A (eds) Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003). Technische Universität Wien, Vienna, pp 20–22

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:711

    Google Scholar 

  • Prakasa Rao BLS (2000) Bayes estimation for some stochastic partial differential equations. J Stat Plan Inference 91(2):511–524

    Article  MathSciNet  MATH  Google Scholar 

  • Roques L, Walker E, Franck P, Soubeyrand S, Klein EK (2016) Using genetic data to estimate diffusion rates in heterogeneous landscape. J Math Biol. doi:10.1007/s00285-015-0954-4

    MathSciNet  MATH  Google Scholar 

  • Stan Development Team (2015) Stan modeling language users guide and reference manual (version 2.9.0) http://mc-stan.org

  • Spence MA, Blackwell PG, Blanchard JL (2016) Parameter uncertainty of a dynamic multispecies size spectrum model. Can J Fish Aquat Sci 73(4):589–597

    Article  Google Scholar 

  • Tsehaye I, Jones ML, Bence JR, Brenden TO, Madenjian CP, Warner DM (2014) A multispecies statistical age-structured model to assess predator–prey balance: application to an intensively managed Lake Michigan pelagic fish community. Can J Fish Aquat Sci 71(4):627–644

    Article  Google Scholar 

  • Xun X, Cao J, Mallick B, Maity A, Carroll RJ (2013) Parameter estimation of partial differential equation models. J Am Stat Assoc 108(503):1009–1020

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results was partially funded by the European Union’s Seventh Framework Programme managed by REA-Research Executive Agency http://ec.europa.eu/research/rea([FP7/2007-2013][FP7/2007-2011]) under Grant agreement No. [262059]. The authors are grateful to two anonymous referees for their useful suggestions, which allowed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pasquali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzarone, E., Pasquali, S., Gilioli, G. et al. A Bayesian estimation approach for the mortality in a stage-structured demographic model. J. Math. Biol. 75, 759–779 (2017). https://doi.org/10.1007/s00285-017-1099-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1099-4

Keywords

Mathematics Subject Classification

Navigation