Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis, lecture notes in statistics, vol 151, 1st edn. Springer, New York. doi:10.1007/978-1-4612-1158-7
Google Scholar
Bailey NTJ (1950) A simple stochastic epidemic. Biometrika. doi:10.1093/biomet/37.3-4.193
MathSciNet
MATH
Google Scholar
Bailey NTJ (1957) The mathematical theory of epidemics. Griffin, London
Google Scholar
Ball F, Donnelly P (1995) Strong approximations for epidemic models. Stoch Proc Appl. doi:10.1016/0304-4149(94)00034-Q
MathSciNet
MATH
Google Scholar
Ball F, Neal P (2010) Applications of branching processes to the final size of SIR epidemics. In: Workshop on branching processes and their applications, lecture notes in statistics, vol 197. Springer, Berlin, pp 207–223. doi:10.1007/978-3-642-11156-3_15
Barbour A (1975) The duration of the closed stochastic epidemic. Biometrika. doi:10.1093/biomet/62.2.477
MathSciNet
MATH
Google Scholar
Barbour AD (1974) On a functional central limit theorem for Markov population processes. Adv Appl Prob. doi:10.2307/1426205
MATH
Google Scholar
Barbour AD (1976) Quasi-stationary distributions in Markov population processes. Adv Appl Prob. doi:10.2307/1425906
MATH
Google Scholar
Barbour AD (1980a) Density dependent Markov population processes. In: Biological growth and spread, lecture notes in biomathematics, vol 38, Springer, Berlin, pp 36–49. doi:10.1007/978-3-642-61850-5_4
Barbour AD (1980b) Equilibrium distributions of Markov population processes. Adv Appl Prob. doi:10.2307/1426422
MATH
Google Scholar
Bartlett MS (1949) Some evolutionary stochastic processes. J R Stat Soc 11:211–229
MathSciNet
MATH
Google Scholar
Bartlett MS (1956) Deterministic and stochastic models for recurrent epidemics. In: Proceedings of the third Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley, vol 4
Black AJ, Ross J (2015) Computation of epidemic final size distributions. J Theor Biol. doi:10.1016/j.jtbi.2014.11.029
Google Scholar
Coulson T, Rohani P, Pascual M (2004) Skeletons, noise and population growth: the end of an old debate? Trends Ecol Evol. doi:10.1016/j.tree.2004.05.008
Google Scholar
Ethier SN, Kurtz TG (2008) Markov processes: characterisation and convergence. Wiley, Hoboken. doi:10.1002/9780470316658
Fox GA (1993) Life history evolution and demographic stochasticity. Evol Ecol. doi:10.1007/BF01237731
Google Scholar
Grenfell BT, Wilson K, Finkenstadt BF, Coulson TN, Murray S, Albon SD, Pemberton JM, Clutton-Brock TH, Crawley MJ (1998) Noise and determinism in synchronized sheep dynamics. Nature. doi:10.1038/29291
Google Scholar
Jenkinson G, Goutsias J (2012) Numerical integration of the master equation in some models of stochastic epidemiology. PLoS One. doi:10.1371/journal.pone.0036160
Google Scholar
Keeling MJ, Wilson HB, Pacala SW (2000) Reinterpreting space, time lags, and functional responses in ecological models. Science. doi:10.1126/science.290.5497.1758
Google Scholar
Kendall DG (1965) Mathematical models of the spread of infection. In: Mathematics and Computer Science in Biology and Medicine. H.M.S.O, London, pp 213–225
Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond A. doi:10.1098/rspa.1927.0118
MATH
Google Scholar
Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Prob. doi:10.2307/3212147
MathSciNet
MATH
Google Scholar
Kurtz TG (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J Appl Prob. doi:10.2307/3211904
MathSciNet
MATH
Google Scholar
Lefèvre C (1990) Stochastic epidemic models for SIR infectious diseases: a brief survey of the recent general theory. In: Stochastic Processes in epidemic theory, lecture notes in biomathematics, vol 86. Springer, Berlin, pp 1–12. doi:10.1007/978-3-662-10067-7_1
Nagaev AV, Startsev AN (1970) The asymptotic analysis of a stochastic model of an epidemic. Theory Prob Appl 15(1):98–107. doi:10.1137/1115007
Rand DA, Wilson HB (1991) Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proc R Soc Lond B. doi:10.1098/rspb.1991.0142
Google Scholar
Safta C, Sargsyan K, Debusschere B, Najm HN (2015) Hybrid discrete/continuum algorithms for stochastic reaction networks. J Comput Phys. doi:10.1016/j.jcp.2014.10.026
MathSciNet
MATH
Google Scholar
Sazonov I, Kelbert M, Gravenor MB (2011) A two-stage model for the SIR outbreak: Accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage. Math Biosci. doi:10.1016/j.mbs.2011.09.002
MathSciNet
MATH
Google Scholar
Scalia-Tomba G (1985) Asymptotic final-size distribution for some chain-binomial processes. Adv Appl Prob. doi:10.2307/1427116
MathSciNet
MATH
Google Scholar
Spagnolo B, Fiasconaro A, Valenti D (2003) Noise induced phenomena in Lotka-Volterra systems. Fluct Noise Lett. doi:10.1142/S0219477503001245
MATH
Google Scholar
Watson R (1980) A useful random time-scale transformation for the standard epidemic model. J Appl Prob. doi:10.2307/3213022
MathSciNet
MATH
Google Scholar
Watson R (1981) An application of a martingale central limit theorem to the standard epidemic model. Stoc Proc Appl. doi:10.1016/0304-4149(81)90023-5
MathSciNet
MATH
Google Scholar
Waugh WAO (1958) Conditioned Markov processes. Biometrika. doi:10.1093/biomet/45.1-2.241
MathSciNet
MATH
Google Scholar
Yi S, Ulsoy A (2006) Solution of a system of linear delay differential equations using the matrix Lambert function. In: Proc. of the 25th American control conference, Minneapolis, pp 2433–2438. doi:10.1109/ACC.2006.1656585