Skip to main content
Log in

A numerical scheme for the early steps of nucleation-aggregation models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the formation of large clusters out of small particles, the initializing step is called the nucleation, and consists in the spontaneous reaction of agents which aggregate into small and stable polymers called nuclei. After this early step, the polymers are involved in a number of reactions such as polymerization, fragmentation and coalescence. Since there may be several orders of magnitude between the size of a particle and the size of an aggregate, building efficient numerical schemes to capture accurately the kinetics of the reaction is a delicate step of key importance. In this article, we propose a conservative scheme, based on finite volume methods on an adaptive grid, which is capable of simulating well the early steps of the reaction as well as the later chain reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bourgade J, Filbet F (2008) Convergence of a finite volume scheme for coagulation–fragmentation equations. Math Comp 77(262):851–882

    Article  MathSciNet  MATH  Google Scholar 

  • Carrillo JA, Goudon T (2004) A numerical study on large-time asymptotics of the Lifshitz–Slyozov system. J Sci Comput 20(1):69–113

    Article  MathSciNet  MATH  Google Scholar 

  • Caizo JA, Desvillettes L, Fellner K (2010) Regularity and mass conservation for discrete coagulation-fragmentation equations with diffusion. Annales de lInstitut Henri Poincare Annales Analyse Non Lineaire Nonlinear Anal 27(2):639–654

    Article  MathSciNet  MATH  Google Scholar 

  • Collet J, Goudon T, Poupaud F, Vasseur A (2002) The Becker–Döring system and its Lifshitz-Slyozov limit. SIAM J Appl Math 62(5):1488–1500. doi:10.1137/S0036139900378852. http://link.aip.org/link/?SMM/62/1488/1

  • Collet J, Hariz S (1999) A modified version of the Lifshitz–Slyozov model. Appl Math Lett 12:81–95

    MathSciNet  MATH  Google Scholar 

  • Deschamps J, Hingant E, Yvinec R (2014) From a stochastic Becker–Döring model to the Lifschitz-Slyozov equation with boundary value. Preprint

  • Deuflhard P, Huisinga W, Jahnke T, Wulkow M (2008) Adaptive discrete Galerkin methods applied to the chemical master equation. Technology 30(6):2990–3011

    MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz J (2007) Physiologically structured population models: towards a general mathematical theory. Springer, Berlin, pp 5–20

    Google Scholar 

  • Doumic M, Goudon T, Lepoutre T (2009) Scaling limit of a discrete prion dynamics model. Commun Math Sci 7(4):839–865

    Article  MathSciNet  MATH  Google Scholar 

  • Filbet F (2008) An asymptotically stable scheme for diffusive coagulation–fragmentation models. Commun Math Sci 6(2):257–280

    Article  MathSciNet  MATH  Google Scholar 

  • Filbet F, Laurençot P (2003) Numerical approximation of the Lifshitz–Slyozov–Wagner equation. SIAM J Numer Anal 41(2):563–588 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Filbet F, Laurençot P (2004) Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation. Arch Math (Basel) 83(6):558–567

    Article  MathSciNet  MATH  Google Scholar 

  • Filbet F, Laurençot P (2004) Numerical simulation of the Smoluchowski coagulation equation. SIAM J Sci Comput 25(6):2004–2028 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Goudon T, Lagoutière F, Tine L (2012) The Lifschitz–Slyozov equation with space-diffusion of monomers. Kinetic Relat Models 5(2):325–355. doi:10.3934/krm.2012.5.325

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar J, Peglow M, Warnecke G, Heinrich S, Mörl L (2006) Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chem Eng Sci 61(10):3327–3342. doi:10.1016/j.ces.2005.12.014

  • Laurençot P, Mischler S (2002) From the discrete to the continuous coagulation–fragmentation equations. Proc Roy Soc Edinburgh Sect A 132(5):1219–1248

    Article  MathSciNet  MATH  Google Scholar 

  • LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511791253

    Book  Google Scholar 

  • Masel J, Jansen V, Nowak M (1999) Quantifying the kinetic parameters of prion replication. Biophys Chem 77(2–3):139–152. doi:10.1016/S0301-4622(99)00016-2

    Article  Google Scholar 

  • Oosawa F, Asakura S (1975) Thermodynamics of the polymerization of protein. Academic Press, New York

    Google Scholar 

  • Penrose O (1989) Metastable states for the Becker–Döring cluster equations. Commun Math Phys 124(4):515–541

    Article  MathSciNet  MATH  Google Scholar 

  • Prigent S, Ballesta A, Charles F, Lenuzza N, Gabriel P, Tine L, Rezaei H, Doumic M (2012) An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation. PLoS One 7(11):e43273. doi:10.1371/journal.pone.0043273

    Article  Google Scholar 

  • Pruss J, Pujo-Menjouet L, Webb G, Zacher R (2006) Analysis of a model for the dynamics of prion. Dis Cont Dyn Syst Ser B 6(1):225–235

    MathSciNet  MATH  Google Scholar 

  • Sindi SS, Serio TR (2009) Prion dynamics and the quest for the genetic determinant in protein-only inheritance. Curr Opin Microbiol 12(6):623–630

    Article  Google Scholar 

  • Wulkow M (1996) The simulation of molecular weight distributions in polyreaction kinetics by discrete Galerkin methods. Macromol Theory Simul 5:396–416

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Air Force Office of Scientific Research under Grant Number AFOSR FA9550-12-1-0188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Doumic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banks, H.T., Doumic, M. & Kruse, C. A numerical scheme for the early steps of nucleation-aggregation models. J. Math. Biol. 74, 259–287 (2017). https://doi.org/10.1007/s00285-016-1026-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-1026-0

Keywords

Mathematics Subject Classification

Navigation