Skip to main content
Log in

The effect of site-to-site variability in ultrasensitive dose responses

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we study the ultrasensitive behavior of multisite phosphorylation or ligand binding systems, under site-to-site variations in the modification rates. Using computational methods and mathematical analysis, we prove that the Hill coefficient reaches its maximum value when all sites are identical to each other. This is shown for a non-cooperative multisite system with arbitrary activation function as well as for the well known MWC model. We also show that the Hill coefficient of the dose response is locally robust to variations in individual modification rates. The results suggest that maximal ultrasensitivity is reached when sites are similar to each other but not necessarily identical, a conformation found in unstructured modification domains present in many experimental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chan C, Liu X, Wang L, Bardwell L, Nie Q, Enciso G (2012) Protein scaffolds can enhance the bistability of multisite phosphorylation. PLoS Comput Biol 8:1–9

    Article  Google Scholar 

  • Conradi C, Shiu A (2015) A global convergence result for processive multisite phosphorylation systems. Bull Math Biol 77(1):126–155

    Article  MathSciNet  MATH  Google Scholar 

  • Enciso G (2013) Multisite mechanisms for ultrasensitivity in signal transduction. In: Lecture Notes in Mathematics, vol 2102, chap 6. Springer, Berlin

  • Enciso G, Kellogg D, Vargas A (2014) Compact modeling of allosteric multisite proteins: application to a cell size checkpoint. PLoS Comp Biol 10(2):1–12

    Article  Google Scholar 

  • Feinberg M (1989) Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem Eng Sci 44(9):1819–1827

    Article  Google Scholar 

  • Feliu E, Knudsen M, Andersen L, Wiuf C (2012) An algebraic approach to signaling cascades with \(n\) layers. Bull Math Biol 74(1):45–72

    Article  MathSciNet  MATH  Google Scholar 

  • Goldbeter A, Koshland D (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78:6840–6844

    Article  MathSciNet  Google Scholar 

  • Gunawardena J (2005) Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc Natl Acad Sci USA 102:14617–14622

    Article  Google Scholar 

  • Harrington H, Feliu E, Wiuf C, Stumpf M (2013) Cellular compartments cause multistability and allow cells to process more information. Biophys J 104:1824–1831

    Article  Google Scholar 

  • Harvey S, Enciso G, Dephoure N, Gygi S, Gunawardena J, Kellogg D (2012) A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast. Mol Biol Cell 22(19):3595–3608

    Article  Google Scholar 

  • Herzog F, Hill J (1946) The Bernstein polynomials for discontinuous functions. Am J Math 68(1):109–124

    Article  MathSciNet  MATH  Google Scholar 

  • Hill A (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Proc Physiol Soc 40(suppl):iv–vii

    Google Scholar 

  • Iakoucheva L, Radivojac P, Brown C, O’Connor T, Sikes J, Obradovic Z, Dunker A (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acid Res 32:1037–1049

    Article  Google Scholar 

  • Koshland D, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5(1):365–385

    Article  Google Scholar 

  • Lenz P, Swain P (2006) An entropic mechanism to generate highly cooperative and specific binding from protein phoshporylations. Curr Biol 16:2150–2155

    Article  Google Scholar 

  • Liu X, Bardwell L, Nie Q (2010) A combination of multisite phosphorylation and substrate sequestration produces switch-like responses. Biophys J 98(8):1396–1407

    Article  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  Google Scholar 

  • Niculescu C (2000) A new look at Newton’s inequalities. J Inequal Pure Appl Math 1(2):1–14

    MathSciNet  MATH  Google Scholar 

  • Peng K, Vucetic S, Radivojac P, Brown C, Dunker A, Obradovic Z (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3(1):35–60

    Article  Google Scholar 

  • Perez-Millan M, Dickenstein A (2014) Implicit dose–response curves. J Math Biol 70(7):1669–1684

    Article  MathSciNet  MATH  Google Scholar 

  • Ryerson S, Enciso G (2014) Ultrasensitivity in independent multisite systems. J Math Biol 69(4):977–999

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkar M, Blair D (2010) Chemotaxis signaling protein Che Y binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc Natl Acad Sci USA 107(20):9370–9375

    Article  Google Scholar 

  • Serber Z, Ferrell J (2007) Tuning bulk electrostatics to regulate protein function. Cell 128:441–444

    Article  Google Scholar 

  • Sourjik V, Berg H (2004) Functional interactions between receptors in bacterial chemotaxis. Nature 428:437–441

    Article  Google Scholar 

  • Strickfaden S, Winters MJ, Ben-Ari G, Lamson R, Tyers M, Pryciak P (2007) A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 128:519–531

    Article  Google Scholar 

  • Thomson M, Gunawardena J (2009) Unlimited multistability in multisite phosphorylation systems. Nature 460:274–277

    Article  Google Scholar 

  • Vignali M, Steger D, Neely K, Workman J (2000) Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes. EMBO J 19(11):2629–2640

    Article  Google Scholar 

  • Wang L, Nie Q, Enciso G (2010) Nonessential sites improve phosphorylation switch. Biophys Lett 99(10):41–43

    Google Scholar 

  • Wright P, Dyson J (2015) Intrinsically disordered proteins in cellular signaling and regulation. Nat Rev Mol Cell Biol 16:18–29

    Article  Google Scholar 

  • Xu Y, Gunawardena J (2012) Realistic enzymology for post-translational modification: zero-order ultrasensitivity revisited. J Theor Biol 311:139–152

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Michael Cranston and Lee Bardwell for their help and suggestions. This material is based upon work supported by the National Science Foundation under Grants Nos. DMS-1122478 and 1129008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German A. Enciso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enciso, G.A., Ryerson, S. The effect of site-to-site variability in ultrasensitive dose responses. J. Math. Biol. 74, 23–41 (2017). https://doi.org/10.1007/s00285-016-1013-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-1013-5

Keywords

Mathematics Subject Classification

Navigation