Skip to main content
Log in

Modelling the fear effect in predator–prey interactions

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A recent field manipulation on a terrestrial vertebrate showed that the fear of predators alone altered anti-predator defences to such an extent that it greatly reduced the reproduction of prey. Because fear can evidently affect the populations of terrestrial vertebrates, we proposed a predator–prey model incorporating the cost of fear into prey reproduction. Our mathematical analyses show that high levels of fear (or equivalently strong anti-predator responses) can stabilize the predator–prey system by excluding the existence of periodic solutions. However, relatively low levels of fear can induce multiple limit cycles via subcritical Hopf bifurcations, leading to a bi-stability phenomenon. Compared to classic predator–prey models which ignore the cost of fear where Hopf bifurcations are typically supercritical, Hopf bifurcations in our model can be both supercritical and subcritical by choosing different sets of parameters. We conducted numerical simulations to explore the relationships between fear effects and other biologically related parameters (e.g. birth/death rate of adult prey), which further demonstrate the impact that fear can have in predator–prey interactions. For example, we found that under the conditions of a Hopf bifurcation, an increase in the level of fear may alter the direction of Hopf bifurcation from supercritical to subcritical when the birth rate of prey increases accordingly. Our simulations also show that the prey is less sensitive in perceiving predation risk with increasing birth rate of prey or increasing death rate of predators, but demonstrate that animals will mount stronger anti-predator defences as the attack rate of predators increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44(1):331–340

    Article  Google Scholar 

  • Cantrell RS, Cosner C (2001) On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. J Math Anal Appl 257(1):206–222

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez C, Thieme HR (1995) Asymptotically autonomous epidemic models. Math Popul Dyn Anal Heterog 1:33–50

    Google Scholar 

  • Clinchy M, Sheriff MJ, Zanette LY (2013) Predator-induced stress and the ecology of fear. Funct Ecol 27(1):56–65

    Article  Google Scholar 

  • Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evolut 23(4):194–201

    Article  Google Scholar 

  • Creel S, Christianson D, Liley S, Winnie JA (2007) Predation risk affects reproductive physiology and demography of elk. Science 315(5814):960–960

    Article  Google Scholar 

  • Cresswell W (2011) Predation in bird populations. J Ornithol 152(1):251–263

    Article  Google Scholar 

  • DeAngelis DL, Goldstein RA, O’Neill RV (1975) A model for tropic interaction. Ecology 56(4):881–892

    Article  Google Scholar 

  • Dhooge A, Govaerts W, Kuznetsov YA (2003) Matcont: a matlab package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw (TOMS) 29(2):141–164

    Article  MathSciNet  MATH  Google Scholar 

  • Dhooge A, Govaerts W, Kuznetsov YA, Meijer HGE, Sautois B (2008) New features of the software matcont for bifurcation analysis of dynamical systems. Math Comput Model Dyn Syst 14(2):147–175

    Article  MathSciNet  MATH  Google Scholar 

  • Eggers S, Griesser M, Ekman J (2005) Predator-induced plasticity in nest visitation rates in the Siberian jay (Perisoreus infaustus). Behav Ecol 16(1):309–315

  • Eggers S, Griesser M, Nystrand M, Ekman J (2006) Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proc R Soc B Biol Sci 273(1587):701–706

    Article  Google Scholar 

  • Fontaine JJ, Martin TE (2006) Parent birds assess nest predation risk and adjust their reproductive strategies. Ecol Lett 9(4):428–434

    Article  Google Scholar 

  • Freedman HI, Wolkowicz GSK (1986) Predator–prey systems with group defence: the paradox of enrichment revisited. Bull Math Biol 48(5/6):493–508

    Article  MathSciNet  MATH  Google Scholar 

  • Ghalambor CK, Peluc SI, Martin TE (2013) Plasticity of parental care under the risk of predation: how much should parents reduce care? Biol Lett 9(4):20130154

    Article  Google Scholar 

  • Gilpin ME, Rosenzweig ML (1972) Enriched predator–prey systems: theoretical stability. Science 177(4052):902–904

    Article  Google Scholar 

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 97(S45):5–60

    Article  Google Scholar 

  • Hua F, Fletcher RJ, Sieving KE, Dorazio RM (2013) Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring. Proceedings of the Royal Society B: Biological Sciences 280(1764):20130762

    Article  Google Scholar 

  • Hua F, Sieving KE, Fletcher RJ, Wright CA (2014) Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance. Behav Ecol 25(3):509–519

    Article  Google Scholar 

  • Huang J, Ruan S, Song J (2014) Bifurcations in a predator–prey system of Leslie type with generalized Holling type III functional response. J Differ Equ 257(6):1721–1752

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang TW (2003) Global analysis of the predator–prey system with Beddington–DeAngelis functional response. J Math Anal Appl 281(1):395–401

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang TW (2004) Uniqueness of limit cycles of the predator–prey system with Beddington–DeAngelis functional response. J Math Anal Appl 290(1):113–122

    Article  MathSciNet  MATH  Google Scholar 

  • Ibáñez-Álamo JD, Soler M (2012) Predator-induced female behaviour in the absence of male incubation feeding: an experimental study. Behav Ecol Sociobiol 66(7):1067–1073

    Article  Google Scholar 

  • Kooij RE, Zegeling A (1997) Qualitative properties of two-dimensional predator–prey systems. Nonlinear Anal Theory Methods Appl 29(6):693–715

    Article  MathSciNet  MATH  Google Scholar 

  • Kuang Y, Freedman HI (1988) Uniqueness of limit cycles in Gause-type models of predator–prey systems. Math Biosci 88(1):67–84

    Article  MathSciNet  MATH  Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48(1):25–34

    Article  Google Scholar 

  • Lima SL (2009) Predators and the breeding bird: behavioural and reproductive flexibility under the risk of predation. Biol Rev 84(3):485–513

    Article  Google Scholar 

  • May RM (1972) Limit cycles in predator–prey communities. Science 177(4052):900–902

    Article  Google Scholar 

  • McAllister CD, LeBrasseur RJ, Parsons TR, Rosenzweig ML (1972) Stability of enriched aquatic ecosystems. Science 175(4021):562–565

    Article  Google Scholar 

  • Meiss JD (2007) Differential dynamical systems, vol 14. SIAM, Philadelphia

  • Orrock JL, Fletcher RJ (2014) An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey. Proc R Soc B Biol Sci 281(1784):20140391

    Article  Google Scholar 

  • Peacor SD, Peckarsky BL, Trussell GC, Vonesh JR (2013) Costs of predator-induced phenotypic plasticity: a graphical model for predicting the contribution of nonconsumptive and consumptive effects of predators on prey. Oecologia 171(1):1–10

    Article  Google Scholar 

  • Perko L (1996) Differential equations and dynamical systems. Springer, New York

    Book  MATH  Google Scholar 

  • Pettorelli N, Coulson T, Durant SM, Gaillard JM (2011) Predation, individual variability and vertebrate population dynamics. Oecologia 167(2):305–314

    Article  Google Scholar 

  • Preisser EL, Bolnick DI (2008) The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PloS One 3(6):e2465

    Article  Google Scholar 

  • Riebesell JF (1974) Paradox of enrichment in competitive systems. Ecology 55(1):183–187

    Article  Google Scholar 

  • Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171(3969):385–387

    Article  Google Scholar 

  • Ruan S, Xiao D (2001) Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J Appl Math 61(4):1445–1472

    Article  MathSciNet  MATH  Google Scholar 

  • Seo G, DeAngelis DL (2011) A predator–prey model with a Holling type I functional response including a predator mutual interference. J Nonlinear Sci 21(6):811–833

    Article  MathSciNet  MATH  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2009) The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J Anim Ecol 78(6):1249–1258

    Article  Google Scholar 

  • Song Y, Zou X (2014) Bifurcation analysis of a diffusive ratio-dependent predator prey model. Nonlinear Dyn 78(1):49–70

    Article  MathSciNet  MATH  Google Scholar 

  • Song Y, Zou X (2014) Spatiotemporal dynamics in a diffusive ratio-dependent predator prey model near a Hopf–Turing bifurcation point. Comput Math Appl 67(10):1978–1997

    Article  MathSciNet  Google Scholar 

  • Sugie J, Kohno R, Miyazaki R (1997) On a predator–prey system of Holling type. Proc Am Math Soc 125(7):2041–2050

    Article  MathSciNet  MATH  Google Scholar 

  • Svennungsen TO, Holen ØH, Leimar O (2011) Inducible defenses: continuous reaction norms or threshold traits? Am Nat 178(3):397–410

    Article  Google Scholar 

  • Wirsing AJ, Ripple WJ (2011) A comparison of shark and wolf research reveals similar behavioural responses by prey. Front Ecol Environ 9(6):335–341

    Article  Google Scholar 

  • Wolkowicz GSK (1988) Bifurcation analysis of a predator-prey system involving group defence. SIAM J Appl Math 48(3):592–606

    Article  MathSciNet  MATH  Google Scholar 

  • Zanette LY, White AF, Allen MC, Clinchy M (2011) Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061):1398–1401

    Article  Google Scholar 

  • Zhu H, Campbell SA, Wolkowicz GSK (2003) Bifurcation analysis of a predator–prey system with nonmonotonic functional response. SIAM J Appl Math 63(2):636–682

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zou.

Additional information

Research partially supported by the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zanette, L. & Zou, X. Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73, 1179–1204 (2016). https://doi.org/10.1007/s00285-016-0989-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-0989-1

Keywords

Mathematics Subject Classification

Navigation