Journal of Mathematical Biology

, Volume 73, Issue 2, pp 491–523 | Cite as

Inferring average generation via division-linked labeling

Article

Abstract

For proliferating cells subject to both division and death, how can one estimate the average generation number of the living population without continuous observation or a division-diluting dye? In this paper we provide a method for cell systems such that at each division there is an unlikely, heritable one-way label change that has no impact other than to serve as a distinguishing marker. If the probability of label change per cell generation can be determined and the proportion of labeled cells at a given time point can be measured, we establish that the average generation number of living cells can be estimated. Crucially, the estimator does not depend on knowledge of the statistics of cell cycle, death rates or total cell numbers. We explore the estimator’s features through comparison with physiologically parameterized stochastic simulations and extrapolations from published data, using it to suggest new experimental designs.

Keywords

Average generation inference Branching processes Stochastically decorated trees 

Mathematics Subject Classification

92D25 60J85 

References

  1. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89(21):10114–10118CrossRefGoogle Scholar
  2. Asmussen S (1998) A probabilistic look at the Wiener–Hopf equation. SIAM Rev 40(2):189–201MathSciNetCrossRefMATHGoogle Scholar
  3. Athreya KB, Kaplan N (1976) Convergence of the age distribution in the one-dimensional supercritical age-dependent branching process. Ann Probab 4(1):38–50MathSciNetCrossRefMATHGoogle Scholar
  4. Bai L, Charvin G, Siggia ED, Cross FR (2010) Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev Cell 18(4):544-555Google Scholar
  5. Bellman R, Harris T (1952) On age-dependent binary branching processes. Ann Math 2(55):280–295MathSciNetCrossRefMATHGoogle Scholar
  6. Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B, Gräf P, Verschoor A, Schiemann M, Höfer T, Busch DH (2013) Disparate individual fates compose robust CD8+ T cell immunity. Science 340(6132):630–635CrossRefGoogle Scholar
  7. Carlson A, Kas A, Kirkwood R, Hays LE, Preston BD, Salipante SJ, Horwitz MS (2012) Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nat Methods 9(1):78–80CrossRefGoogle Scholar
  8. Crump KS, Mode CJ (1969) An age-dependent branching process with correlations among sister cells. J Appl Probab 6(1):205–210MathSciNetCrossRefMATHGoogle Scholar
  9. De Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theor Biol 327:45–87MathSciNetCrossRefMATHGoogle Scholar
  10. Dowling MR, Kan A, Heinzel S, Zhou JHS, Marchingo JM, Wellard CJ, Markham JF, Hodgkin PD (2014) Stretched cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA 111(17):6377–6382CrossRefGoogle Scholar
  11. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148(4):1667–1686Google Scholar
  12. Duffy KR, Subramanian VG (2009) On the impact of correlation between collaterally consanguineous cells on lymphocyte population dynamics. J Math Biol 59(2):255–285MathSciNetCrossRefMATHGoogle Scholar
  13. Duffy KR, Wellard CJ, Markham JF, Zhou JHS, Holmberg R, Hawkins ED, Hasbold J, Dowling MR, Hodgkin PD (2012) Activation-induced B cell fates are selected by intracellular stochastic competition. Science 335(6066):338–341CrossRefGoogle Scholar
  14. Feller W (1968) An introduction to probability theory and its applications, vol I. Wiley, New YorkMATHGoogle Scholar
  15. Frank SA, Iwasa Y, Nowak MA (2003) Patterns of cell division and the risk of cancer. Genetics 163(4):1527–1532Google Scholar
  16. Gasche C, Chang CL, Natarajan L, Goel A, Rhees J, Young DJ, Arnold CN, Boland CR (2003) Identification of frame-shift intermediate mutant cells. Proc Natl Acad Sci USA 100(4):1914–1919CrossRefGoogle Scholar
  17. Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JWJ, Velds A, Urbanus J, Naik SH, Jacobs H, Beltman JB, de Boer R, Schumacher T (2013) Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340(6132):635–639CrossRefGoogle Scholar
  18. Giurumescu CA, Kang S, Planchon TA, Betzig E, Bloomekatz J, Yelon D, Cosman P, Chisholm AD (2012) Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development 139(22):4271–4279CrossRefGoogle Scholar
  19. Golden JA, Fields-Berry SC, Cepko CL (1995) Construction and characterization of a highly complex retroviral library for lineage analysis. Proc Natl Acad Sci USA 92(12):5704–5708CrossRefGoogle Scholar
  20. Gomes FL, Zhang G, Carbonell F, Correa JA, Harris WA, Simons BD, Cayouette M (2011) Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138(2):227–235CrossRefGoogle Scholar
  21. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nat Genet 345(6274):458–460Google Scholar
  22. Harris TE (1963) The theory of branching processes. Springer, BerlinCrossRefMATHGoogle Scholar
  23. Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD (2007) Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat Protoc 2(9):2057–2067CrossRefGoogle Scholar
  24. Hawkins ED, Markham JF, McGuinness LP, Hodgkin PD (2009) A single-cell pedigree analysis of alternative stochastic lymphocyte fates. Proc Natl Acad Sci USA 106(32):13457–13462CrossRefGoogle Scholar
  25. Hills M, Lücke K, Chavez EA, Eaves CJ, Lansdorp PM (2009) Probing the mitotic history and developmental stage of hematopoietic cells using single telomere length analysis (STELA). Blood 113(23):5765–5775CrossRefGoogle Scholar
  26. Jagers P (1969) The proportions of individuals of different kinds in two-type populations. A branching process problem arising in biology. J Appl Probab 6:249–260MathSciNetCrossRefMATHGoogle Scholar
  27. Jagers P (1969) Renewal theory and the almost sure convergence of branching processes. Arkiv Mate 7(6):495–504MathSciNetCrossRefMATHGoogle Scholar
  28. Kaszubowska L (2008) Telomere shortening and ageing of the immune system. J Physiol Pharmacol 59:169–186Google Scholar
  29. Kimmel M, Axelrod DE (2002) Branching processes in biology. Springer, New YorkCrossRefMATHGoogle Scholar
  30. Koole W, Tijsterman M (2014) Mosaic analysis and tumor induction in zebrafish by microsatellite instability-mediated stochastic gene expression. Dis Model Mech 7(7):929–936CrossRefGoogle Scholar
  31. Koole W, Schäfer HS, Agami R, van Haaften G, Tijsterman M (2013) A versatile microsatellite instability reporter system in human cells. Nucleic Acids Res 41(16):e158CrossRefGoogle Scholar
  32. Kozar S, Morrissey E, Nicholson AM, van der Heijden M, Zecchini HI, Kemp R, Tavaré S, Vermeulen L, Winton DJ (2013) Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13(5):626–633CrossRefGoogle Scholar
  33. Krantz SG, Parks HR (2002) A primer of real analytic functions. Birkhäuser, BostonCrossRefMATHGoogle Scholar
  34. Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AMK, Ng K, Ma J, Wienholds E, Dunant C, Pollett A, Gallinger S, McPherson J, Mullighan CG, Shibata D, Dick JE (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548CrossRefGoogle Scholar
  35. Levinson N (1960) Limiting theorems for age-dependent branching processes. Ill J Math 4:100–118MathSciNetMATHGoogle Scholar
  36. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146(2):209–221CrossRefGoogle Scholar
  37. Lu R, Neff NF, Quake SR, Weissman IL (2011) Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol 29(10):928–933CrossRefGoogle Scholar
  38. Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1):147–154MathSciNetCrossRefGoogle Scholar
  39. Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171(1):131–137CrossRefGoogle Scholar
  40. Marchingo JM, Kan A, Sutherland RM, Duffy KR, Wellard CJ, Belz GT, Lew AM, Dowling MR, Heinzel S, Hodgkin PD (2014) Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. Science 346(6213):1123–1127CrossRefGoogle Scholar
  41. Markham JF, Wellard CJ, Hawkins ED, Duffy KR, Hodgkin PD (2010) A minimum of two distinct heritable factors are required to explain correlation structures in proliferating lymphocytes. J R Soc Interface 7(48):1049–1059CrossRefGoogle Scholar
  42. Merlo LMF, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924–935CrossRefGoogle Scholar
  43. Mode CJ (1966) Restricted transition probabilities and their applications to some problems in the dynamics of biological populations. Bull Math Biophys 28:315–331MathSciNetCrossRefMATHGoogle Scholar
  44. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109CrossRefGoogle Scholar
  45. Naik S, Perié L, Swart E, Gerlach C, van Rooi N, de Boer R, Schumacher T (2013) Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496:229–233CrossRefGoogle Scholar
  46. Olofsson P (1996) Branching processes with local dependencies. Ann Appl Probab 6(1):238–268MathSciNetCrossRefMATHGoogle Scholar
  47. Perié L, Hodgkin PD, Naik SH, Schumacher TN, de Boer RJ, Duffy KR (2014) Determining lineage pathways from cellular barcoding experiments. Cell Rep 6(4):617–624CrossRefGoogle Scholar
  48. Powell EO (1955) Some features of the generation times of individual bacteria. Biometrika 42:16–44CrossRefGoogle Scholar
  49. Quah BJC, Parish CR (2012) New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. J Immunol Methods 379(1):1–14CrossRefGoogle Scholar
  50. Reizel Y, Chapal-Ilani N, Adar R, Itzkovitz S, Elbaz J, Maruvka YE, Segev E, Shlush LI, Dekel N, Shapiro E (2011) Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet 7(7):e1002192CrossRefGoogle Scholar
  51. Resnick SI (1992) Adventures in stochastic processes. Birkhäuser, BostonMATHGoogle Scholar
  52. Richards JL, Zacharias AL, Walton T, Burdick JT, Murray JI (2013) A quantitative model of normal \(Caenorhabditis elegans\) embryogenesis and its disruption after stress. Dev Biol 374(1):12–23CrossRefGoogle Scholar
  53. Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190(2):157–168CrossRefGoogle Scholar
  54. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498CrossRefGoogle Scholar
  55. Samuels ML (1971) Distribution of the branching-process population among generations. J Appl Probab 8:655–667MathSciNetCrossRefMATHGoogle Scholar
  56. Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New YorkCrossRefMATHGoogle Scholar
  57. Shibata D, Navidi W, Salovaara R, Li Z-H, Aaltonen LA (1996) Somatic microsatellite mutations as molecular tumor clocks. Nat Med 2(6):676–681CrossRefGoogle Scholar
  58. Shibata D, Tavaré S (2006) Counting divisions in a human somatic cell tree. Cell Cycle 5(6):610–614CrossRefGoogle Scholar
  59. Slebos RJC, Oh DS, Umbach DM, Taylor JA (2002) Mutations in tetranucleotide repeats following DNA damage depend on repeat sequence and carcinogenic agent. Cancer Res 62(21):6052–6060Google Scholar
  60. Smith JA, Martin L (1973) Do cells cycle? Proc Natl Acad Sci USA 70(4):1263–1267CrossRefGoogle Scholar
  61. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144CrossRefGoogle Scholar
  62. Stuart A, Ord JK (1994) Kendall’s advanced theory of statistics, vol 1. Edward Arnold, LondonMATHGoogle Scholar
  63. Subramanian VG, Duffy KR, Turner ML, Hodgkin PD (2008) Determining the expected variability of immune responses using the cyton model. J Math Biol 56(6):861–892MathSciNetCrossRefMATHGoogle Scholar
  64. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode \(Caenorhabditis elegans\). Dev Biol 100(1):64–119CrossRefGoogle Scholar
  65. Sun L, Wu X, Han M, Xu T, Zhuang Y (2008) A mitotic recombination system for mouse chromosome 17. Proc Natl Acad Sci USA 105(11):4237–4241CrossRefGoogle Scholar
  66. Sun JX, Helgason A, Masson G, Ebenesersdottir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, Stefansson K (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44(10):1161–1165CrossRefGoogle Scholar
  67. Tomasetti C, Vogelstein B (2015) Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217):78–81CrossRefGoogle Scholar
  68. Tsao J-L, Yatabe Y, Salovaara R, Järvinen HJ, Mecklin J-P, Aaltonen LA, Tavaré S, Shibata D (2000) Genetic reconstruction of individual colorectal tumor histories. Proc Natl Acad Sci USA 97(3):1236–1241CrossRefGoogle Scholar
  69. Vaziri H, Schächter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52(4):661–667Google Scholar
  70. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91(21):9857–9860CrossRefGoogle Scholar
  71. Wasserstrom A, Frumkin D, Adar R, Itzkovitz S, Stern T, Kaplan S, Shefer G, Shur I, Zangi L, Reizel Y, Harmelin A, Dor Y, Dekel N, Reisner Y, Benayahu D, Tzahor E, Segal E, Shapiro EY (2008) Estimating cell depth from somatic mutations. PLoS Comput Biol 4(5)Google Scholar
  72. Weber TS, Jaehnert I, Schichor C, Or-Guil M, Carneiro J (2014) Quantifying the length and variance of the eukaryotic cell cycle phases by a stochastic model and dual nucleoside pulse labelling. Plos Comput Biol 10(7)Google Scholar
  73. Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17(4):498–502CrossRefGoogle Scholar
  74. Zhang B, Dai M, Li Q-J, Zhuang Y (2013) Tracking proliferative history in lymphocyte development with cre-mediated sister chromatid recombination. PLoS Genet 9(10):e1003887, 10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Hamilton InstituteMaynooth UniversityMaynoothIreland
  2. 2.Division of ImmunologyNetherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Department of Theoretical Biology and BioinformaticsUtrecht UniversityUtrechtThe Netherlands
  4. 4.Institut Curie, PSL Research University, CNRS UMR168ParisFrance

Personalised recommendations