Skip to main content
Log in

Mechano-electric feedback in one-dimensional model of myocardium

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We utilized our earlier developed 1D mathematical model of the heart muscle strand to study contribution of the bilateral interactions between excitation and contraction on the cellular and tissue levels to the local and global myocardium function. Numerical experiments on the model showed that an initially uniform strand, formed on the inherently identical cells, became functionally heterogeneous due to the asynchronous excitation via the electrical wave spread. Mechanical interactions between the cells and the mechano-electric feedback beat-to-beat affect the functional characteristics of coupled cardiomyocytes further, adjusting their electrical and mechanical heterogeneity to the activation timing. Model simulations showed that functional heterogeneity increases with an enlarged spatial extension of the myocardial strand (in terms of the longer slack length not a higher stretch of the strand), demonstrating a special role of the heart size in its function. Model analysis suggests that cooperative mechanisms of myofilament calcium activation contribute essentially to the generation of cellular functional heterogeneity in contracting cardiac tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Conte SD, De Boor C (1980) Elementary numerical analysis: an algorithmic approach. McGraw-Hill, New York

    MATH  Google Scholar 

  • Dhillon PS, Gray R, Kojodjojo P, Jabr R, Chowdhury R, Fry CH, Peters NS (2013) Relationship between gap-junctional conductance and conduction velocity in Mammalian myocardium. Circ Arrhythm Electrophysiol 6:1208–1214

    Article  Google Scholar 

  • Henriquez CS (2014) A brief history of tissue models for cardiac electrophysiology. IEEE Trans Biomed Eng 61:1457–1465

    Article  Google Scholar 

  • Izakov V, Katsnelson LB, Blyakhman FA, Markhasin VS, Shklyar TF (1991) Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading. Circ Res 69:1171–1184

    Article  Google Scholar 

  • Jahnke T, Lubich C (2000) Error bounds for exponential operator splittings. BIT Numer Math 40:735–744

    Article  MathSciNet  MATH  Google Scholar 

  • Jeyaraj D et al (2007) Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation 115:3145–3155

    Article  Google Scholar 

  • Jie X, Gurev V, Trayanova N (2010) Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ Res 106:185–192

    Article  Google Scholar 

  • Katsnelson LB, Nikitina LV, Chemla D, Solovyova O, Coirault C, Lecarpentier Y, Markhasin VS (2004) Influence of viscosity on myocardium mechanical activity: a mathematical model. J Theor Biol 230:385–405

    Article  MathSciNet  Google Scholar 

  • Katsnelson LB, Sulman TB, Solovyova OE, Markhasin VS (2009) Cooperative mechanisms of thin filament activation and their contribution to the myocardial contractile function: Assessment in a mathematical model. Biophysics 54:39–46

    Article  Google Scholar 

  • Katsnelson LB, Sulman T, Solovyova O, Markhasin VS (2011) Role of myocardial viscoelasticity in disturbances of electrical and mechanical activity in calcium overloaded cardiomyocytes: mathematical modeling. J Theor Biol 272:83–95

    Article  MathSciNet  Google Scholar 

  • Katsnelson LB, Vikulova NA, Kursanov AG, Solovyova OE, Markhasin VS (2014) Electro-mechanical coupling in a one-dimensional model of heart muscle fiber. Russ J Numer Anal Math Model 29:275–284

    Article  MathSciNet  MATH  Google Scholar 

  • Keener JP, Sneyd J (2009) Mathematical physiology: I: cellular physiology. Springer, New York

    MATH  Google Scholar 

  • Keldermann RH, Nash MP, Gelderblom H, Wang VY, Panfilov AV (2010) Electromechanical wavebreak in a model of the human left ventricle. Am J Physiol Heart Circ Physiol 299:H134–H143

    Article  Google Scholar 

  • Killeen MJ, Sabir IN, Grace AA, Huang CLH (2008) Dispersions of repolarization and ventricular arrhythmogenesis: lessons from animal models. Prog Biophys Mol Biol 98:219–229. doi:10.1016/j.pbiomolbio.2008.10.008

    Article  Google Scholar 

  • Kuijpers NH, ten Eikelder HM, Bovendeerd PH, Verheule S, Arts T, Hilbers PA (2007) Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics. Am J Physiol Heart Circ Physiol 292:H2832–2853

    Article  Google Scholar 

  • Li W, Kohl P, Trayanova N (2004) Induction of ventricular arrhythmias following mechanical impact: a simulation study in 3D. J Mol Histol 35:679–686

    Article  Google Scholar 

  • Markhasin VS, Solovyova O (2005) Mechano-electrical heterogeneity in physiological function of the heart. In: Kohl P, Sachs F, Franz MR (eds) Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. W.B. Saunders, pp 198–207

  • Markhasin VS, Balakin A, Protsenko Y, Solovyova O (2011) Activation sequence of cardiac muscle in simplified experimental models: relevance for cardiac mechano electric coupling. In: Kohl P, Sachs F, Franz MR (eds) Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. Oxford Press, Oxford, pp 153–159

    Chapter  Google Scholar 

  • Markhasin VS, Balakin AA, Katsnelson LB, Konovalov P, Lookin ON, Protsenko Y, Solovyova O (2012) Slow force response and auto-regulation of contractility in heterogeneous myocardium. Prog Biophys Mol Biol 110:305–318

    Article  Google Scholar 

  • Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522

    Article  Google Scholar 

  • Noble D, Varghese A, Kohl P, Noble P (1998) Improved guinea-pig ventricular cell model incorporating diadic space, I\(_{Kr}\) and I\(_{Ks}\), and length- and tension-dependent processes. Can J Cardiol 14:123–134

    Google Scholar 

  • Quinn TA, Kohl P, Ravens U (2014) Cardiac mechano-electric coupling research: fifty years of progress and scientific innovation. Prog Biophys Mol Biol 115:71–75

    Article  Google Scholar 

  • Shaw RM, Rudy Y (1997) Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res 81:727–741

    Article  Google Scholar 

  • Solovyova O et al (2003) Mechanical Interaction of heterogeneous cardiac muscle in silico: effects on \(\rm {Ca}^{2+}\) handling and action potential. Int J Bifurcat Chaos 13:3757–3782

    Article  MATH  Google Scholar 

  • Solovyova O, Vikulova N, Konovalov P, Kohl P, Markhasin VS (2004) Mathematical modelling of mechano-electric feedback in cardiomyocytes. Russ J Numer Anal Math Model 19:331–351

    Article  MathSciNet  MATH  Google Scholar 

  • Solovyova O et al (2006) Activation sequence as a key factor in spatio-temporal optimization of myocardial function. Philos Trans A Math Phys Eng Sci 364:1367–1383

    Article  Google Scholar 

  • Sulman T, Katsnelson LB, Solovyova O, Markhasin VS (2008) Mathematical modeling of mechanically modulated rhythm disturbances in homogeneous and heterogeneous myocardium with attenuated activity of \({\rm {Na}^{+}}-{\rm {K}^{+}}\) pump. Bull Math Biol 70:910–949

    Article  MathSciNet  MATH  Google Scholar 

  • Taggart P, Sutton PM (1999) Cardiac mechano-electric feedback in man: clinical relevance. Prog Biophys Mol Biol 71:139–154

    Article  Google Scholar 

  • Trayanova N, Li W, Eason J, Kohl P (2004) Effect of stretch-activated channels on defibrillation efficacy. Heart Rhythm 1:67–77

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The Russian Science Foundation (#14-35-00005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie A. Vikulova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1672 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikulova, N.A., Katsnelson, L.B., Kursanov, A.G. et al. Mechano-electric feedback in one-dimensional model of myocardium. J. Math. Biol. 73, 335–366 (2016). https://doi.org/10.1007/s00285-015-0953-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0953-5

Keywords

Mathematics Subject Classification

Navigation