Skip to main content
Log in

Partitioning, duality, and linkage disequilibria in the Moran model with recombination

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The multilocus Moran model with recombination is considered, which describes the evolution of the genetic composition of a population under recombination and resampling. We investigate a marginal ancestral recombination process, where each site is sampled only in one individual and we do not make any scaling assumptions in the first place. Following the ancestry of these loci backward in time yields a partition-valued Markov process, which experiences splitting and coalescence. In the diffusion limit, this process turns into a marginalised version of the multilocus ancestral recombination graph. With the help of an inclusion–exclusion principle and so-called recombinators we show that the type distribution corresponding to a given partition may be represented in a systematic way by a sampling function. The same is true of correlation functions (known as linkage disequilibria in genetics) of all orders. We prove that the partitioning process (backward in time) is dual to the Moran population process (forward in time), where the sampling function plays the role of the duality function. This sheds new light on the work of Bobrowski et al. (J Math Biol 61:455–473, 2010). The result also leads to a closed system of ordinary differential equations for the expectations of the sampling functions, which can be translated into expected type distributions and expected linkage disequilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aigner M (1979) Combinatorial theory. Springer, Berlin (reprint 1997)

    Book  MATH  Google Scholar 

  • Baake M (2005) Recombination semigroups on measure spaces. Monatsh Math 146:267–278

    Article  MathSciNet  MATH  Google Scholar 

  • Baake M, Baake E (2003) An exactly solved model for mutation, recombination and selection. Can J Math 55:3–41

    Article  MathSciNet  MATH  Google Scholar 

  • Baake E, Herms I (2008) Single-crossover dynamics: finite versus infinite populations. Bull Math Biol 70:603–624

    Article  MathSciNet  MATH  Google Scholar 

  • Baake E, Hustedt T (2011) Moment closure in a Moran model with recombination. Markov Process Relat Fields 17:429–446

    MathSciNet  MATH  Google Scholar 

  • Baake E, von Wangenheim U (2014) Single-crossover recombination and ancestral recombination trees. J Math Biol 68:1371–1402

    Article  MathSciNet  MATH  Google Scholar 

  • Baake E, Baake M, Salamat M (2016) The general recombination equation in continuous time and its solution. Discrete Contin Dyn Syst 36:63–95

    MathSciNet  MATH  Google Scholar 

  • Bennett JH (1954) On the theory of random mating. Ann Eugen 18:311–317

    MathSciNet  Google Scholar 

  • Berge C (1971) Principles of combinatorics. Academic Press, New York

    MATH  Google Scholar 

  • Bhaskar A, Song YS (2012) Closed-form asymptotic sampling distributions under the coalescent with recombination for an arbitrary number of loci. Adv Appl Probab 44:391–407

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski A, Kimmel M (2003) A random evolution related to a Fisher–Wright–Moran model with mutation, recombination and drift. Math Methods Appl Sci 26:1587–1599

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski A, Wojdyła T, Kimmel M (2010) Asymptotic behavior of a Moran model with mutations, drift and recombination among multiple loci. J Math Biol 61:455–473

    Article  MathSciNet  MATH  Google Scholar 

  • Bürger R (2000) The mathematical theory of selection, recombination, and mutation. Wiley, New York

    MATH  Google Scholar 

  • Donnelly P (1986) Dual processes in population genetics. In: Tautu P (ed) Stochastic spatial processes (LNM 1212). Springer, Berlin, pp 94–105

    Chapter  Google Scholar 

  • Durrett R (2008) Probability models for DNA sequence evolution, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Dyson FJ (1962) Statistical theory of energy levels of complex systems III. J Math Phys 3:166–175

    Article  MathSciNet  MATH  Google Scholar 

  • Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley, New York (reprint 2005)

  • Geiringer H (1944) On the probability theory of linkage in Mendelian heredity. Ann Math Stat 15:25–57

    Article  MathSciNet  MATH  Google Scholar 

  • Golding GB (1984) The sampling distribution of linkage disequilibrium. Genetics 108:257–274

    Google Scholar 

  • Gorelick R, Laubichler MD (2004) Decomposing multilocus linkage disequilibrium. Genetics 166:1581–1583

    Article  Google Scholar 

  • Griffiths RC, Marjoram R (1996) Ancestral inference from samples of DNA sequences with recombination. J Comput Biol 3:479–502

    Article  Google Scholar 

  • Hastings A (1984) Linkage disequilibrium, selection, and recombination at three loci. Genetics 106:153–14

    Google Scholar 

  • Hein J, Schierup MH, Wiuf C (2005) Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Hudson RR (1983) Properties of a neutral allele model with intragenetic recombination. Theor Popul Biol 23:183–201

  • Jansen S, Kurt N (2014) On the notion(s) of duality for Markov processes. Probab Surv 11:59–120

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkins PA, Song YS (2010) An asymptotic sampling formula for the coalescent with recombination. Ann Appl Probab 20:1005–1028

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkins PA, Griffiths R (2011) Inference from samples of DNA sequences using a two-locus model. J Comput Biol 18:109–127

    Article  Google Scholar 

  • Jenkins PA, Fearnhead P, Song YS (2015) Tractable stochastic models of evolution for loosely linked loci. Electron J Probab 20:1–26

    MathSciNet  Google Scholar 

  • Liggett TM (1985) Interacting particle systems. Springer, Berlin (reprint 2005)

    Book  MATH  Google Scholar 

  • Mano S (2013) Duality between the two-locus Wright–Fisher diffusion model and the ancestral process with recombination. J Appl Probab 50:256–271

    Article  MathSciNet  MATH  Google Scholar 

  • McVean GAT, Cardin NJ (2005) Approximating the coalescent with recombination. Philos Trans R Soc B 360:1387–1393

    Article  Google Scholar 

  • Mehta ML (1991) Random matrices. Academic Press, San Diego

    MATH  Google Scholar 

  • Möhle M (2001) Forward and backward diffusion approximations for haploid exchangeable population models. Stoch Proc Appl 95:133–149

    Article  MathSciNet  MATH  Google Scholar 

  • Ohta T, Kimura M (1969) Linkage disequilibrium due to random genetic drift. Genet Res 13:47–55

    Article  Google Scholar 

  • Polanska J, Kimmel M (1999) A model of dynamics of mutation, genetic drift and recombination in DNA-repeat genetic loci. Arch Control Sci 9:143–157

    MathSciNet  MATH  Google Scholar 

  • Polanska J, Kimmel M (2005) A simple model of linkage disequilibrium and genetic drift in human genomic SNPs: importance of demography and SNP age. Hum Hered 60:181–195

    Article  Google Scholar 

  • Rota G-C (1964) On the foundations of combinatorial theory I. Theory of Möbius functions. Z Wahrscheinlichkeitstheorie 2:340–368

    Article  MathSciNet  MATH  Google Scholar 

  • Song YS, Song JS (2007) Analytic computation of the expectation of the linkage disequilibrium coefficient \(r^2\). Theor Popul Biol 71:49–60

    Article  MATH  Google Scholar 

  • Stanley RP (1986) Enumerative combinatorics, vol I. Wadsworth & Brooks/Cole, Monterey

    Book  MATH  Google Scholar 

  • von Wangenheim U, Baake E, Baake M (2010) Single-crossover recombination in discrete time. J Math Biol 60:727–760

    Article  MathSciNet  MATH  Google Scholar 

  • Wakeley J (2009) Coalescent theory: an introduction. Roberts and Co., Greenwood Village

    Google Scholar 

  • Wang Y, Rannala B (2008) Bayesian inference of fine-scale recombination rates using population genomic data. Philos Trans R Soc B 363:3921–3930

    Article  Google Scholar 

  • Wiuf C, Hein J (1997) On the number of ancestors to a DNA sequence. Genetics 147:1459–1468

    Google Scholar 

Download references

Acknowledgments

It is our pleasure to thank Noemi Kurt, Cristian Giardina, and Frank Redig for a primer to duality theory, Fernando Cordero for helpful discussions, and Michael Baake for his help to improve the manuscript. The authors gratefully acknowledge the support from the Priority Programme Probabilistic Structures in Evolution (SPP 1590), which is funded by Deutsche Forschungsgemeinschaft (German Research Foundation, DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Baake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esser, M., Probst, S. & Baake, E. Partitioning, duality, and linkage disequilibria in the Moran model with recombination. J. Math. Biol. 73, 161–197 (2016). https://doi.org/10.1007/s00285-015-0936-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0936-6

Keywords

Mathematics Subject Classification

Navigation