Skip to main content
Log in

A glycemia-structured population model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Structured models are population models in which the individuals are characterized with respect to the value of some variable of interest, called the structure variable. In the present paper, we propose a glycemia-structured population model, based on a linear partial differential equation with variable coefficients. The model is characterized by three rate functions: a new-adult population glycemic profile, a glycemia-dependent mortality rate and a glycemia-dependent average worsening rate. First, we formally analyze some properties of the solution, the transient behavior and the equilibrium distribution. Then, we identify the key parameters and functions of the model from real-life data and we hypothesize some plausible modifications of the rate functions to obtain a more beneficial steady-state behavior. The interest of the model is that, while it summarizes the evolution of diabetes in the population in a completely different way with respect to previously published Monte Carlo aggregations of individual-based models, it does appear to offer a good approximation of observed reality and of the features expected in the clinical setting. The model can offer insights in pharmaceutical research and be used to assess possible public health intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adimy M, Crauste F, El Abdllaoui A (2008) Discrete-maturity structured model of cell differentiation with applications to acute myelogenous leukemia. J Biol Syst 16(03):395–424

    Article  MATH  Google Scholar 

  • Aiello WG, Freedman HI (1990) A time-delay model of single-species growth with stage structure. Math Biosci 101(2):139–153

    Article  MathSciNet  MATH  Google Scholar 

  • Arino O (1995) A survey of structured cell population dynamics. Acta Biotheor 43(1–2):3–25

    Article  Google Scholar 

  • Bell GI, Anderson EC (1967) Cell growth and division: I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys J 7(4):329–351

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (CDC)-National Center for Health Statistics (NCHS) (2015) National health and nutrition examination survey data (NHANES). http://www.cdc.gov/nchs/nhanes.htm

  • Centers for Disease Control and Prevention (CDC)-National Center for Health Statistics (NCHS) (2015) Wide-ranging online data for epidemiologic research (WONDER). http://wonder.cdc.gov

  • Chu J, Ducrot A, Magal P, Ruan S (2009) Hopf bifurcation in a size-structured population dynamic model with random growth. J Differ Equ 247(3):956–1000

    Article  MathSciNet  MATH  Google Scholar 

  • De Gaetano A, Hardy T, Beck B, Abu-Raddad E, Palumbo P, Bue-Valleskey J, Pørksen N (2008) Mathematical models of diabetes progression. Am J Physiol Endocrinol Metab 295(6):E1462–E1479

    Article  Google Scholar 

  • Evans LC (1998) Partial differential equations. Graduate studies in mathematics, vol 19 GSM/19. American Mathematical Society, Providence

    Google Scholar 

  • Gandolfi A, Iannelli M, Marinoschi G (2011) An age-structured model of epidermis growth. J Math Biol 62(1):111–141

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg M, Webb GF (1987) Age–size structure in populations with quiescence. Math Biosci 86(1):67–95

    Article  MathSciNet  MATH  Google Scholar 

  • Hardy T, Abu-Raddad E, Porksen N, De Gaetano A (2012) Evaluation of a mathematical model of diabetes progression against observations in the diabetes prevention program. Am J Physiol Endocrinol Metab 303(2):E200–E212

    Article  Google Scholar 

  • Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. PharmacoEconomics 33(7):673–689

    Article  Google Scholar 

  • Hu FB (2008) Obesity epidemiology. Oxford University Press, New York

    Book  Google Scholar 

  • Iannelli M, Milner FA, Pugliese A (1992) Analytical and numerical results for the age-structured sis epidemic model with mixed inter-intracohort transmission. SIAM J Math Anal 23(3):662–688

    Article  MathSciNet  MATH  Google Scholar 

  • Kelly T, Yang W, Chen CS, Reynolds K, He J (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes 32(9):1431–1437

    Article  Google Scholar 

  • Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrika 33(3):183–212

    Article  MathSciNet  MATH  Google Scholar 

  • Lobstein T, Baur L, Uauy R (2004) Obesity in children and young people: a crisis in public health. Obes Rev 5(s1):4–85

    Article  Google Scholar 

  • Metz JAJ, Diekmann O (1986) The dynamics of physiologically structured populations. Lecture notes in biomathematics, Springer, Berlin

  • Penson DF, Wessells H (2004) Erectile dysfunction in diabetic patients. Diabetes Spect 17(4):225–230

    Article  Google Scholar 

  • Seshasai SRK, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I et al (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364(9):829–841

    Article  Google Scholar 

  • Sinko JW, Streifer W (1967) A new model for age-size structure of a population. Ecology 48(6):910–918

    Article  Google Scholar 

  • Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, Bahalim AN, McIntire RK, Gutierrez HR, Cowan M et al (2012) National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr 10(1):22

    Article  Google Scholar 

  • Topp B, Promislow K, Devries G, Miura RM, Finegood DT (2000) A model of \(\beta \)-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 206(4):605–619

    Article  Google Scholar 

  • Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. J Cons Int Explor Mer 3(1):3–51

    Article  Google Scholar 

  • Wang W, Mulone G, Salemi F, Salone V (2001) Permanence and stability of a stage-structured predator–prey model. J Math Anal Appl 262(2):499–528

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK (2008) Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity 16(10):2323–2330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Borri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borri, A., Panunzi, S. & De Gaetano, A. A glycemia-structured population model. J. Math. Biol. 73, 39–62 (2016). https://doi.org/10.1007/s00285-015-0935-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0935-7

Keywords

Mathematics Subject Classification

Navigation