Skip to main content
Log in

Computing the structural influence matrix for biological systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (ij) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A rank-one matrix \(R_h\) can always be written as the product of a column vector \(B_h\) and a row vector \(C_h^\top \).

  2. We remind that the eigenvalues of the Jacobian matrix are continuous functions of its entries, which, in turn, are continuous functions of u.

  3. A Matlab implementation of our algorithm is available at: https://users.dimi.uniud.it/~franco.blanchini/influence.zip.

  4. In this simple case, the reader can easily check the results by direct computation of \( \det \left[ \begin{array}{cc} -J &{}\quad -E \\ H_i &{}\quad 0 \end{array} \right] ,\) by considering \(H_i\) associated with the considered variable (e.g., for \(x_1\), \(H_1 = [ 1 \quad 0 \quad 0 ]\)).

References

  • Abate A, Tiwari A, Sastry S (2007) Box invariance for biologically-inspired dynamical systems. In: Proceedings of the IEEE conference on decision and control, pp 5162–5167

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  Google Scholar 

  • Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397(6715):168–171

    Article  Google Scholar 

  • Angeli D, De Leenheer P, Sontag ED (2010) Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates. J Math Biol 61(4):581–616

    Article  MathSciNet  MATH  Google Scholar 

  • Angeli D, Sontag ED (2009) Graphs and the dynamics of biochemical networks. In: Ingalls B, Iglesias P (eds) Control theory in systems biology, vol 371. MIT Press, London, pp 125–142

    Chapter  Google Scholar 

  • Barmish BR (1994) New tools for robustness of linear systems. Macmillan, New York

    MATH  Google Scholar 

  • Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–917

    Article  Google Scholar 

  • Blanchini F, Franco E (2011) Structurally robust biological networks. BMC Syst Biol 5(1):74

    Article  Google Scholar 

  • Blanchini F, Giordano G (2014) Piecewise-linear Lyapunov functions for structural stability of biochemical networks. Automatica 50(10):2482–2493

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchini F, Miani S (2015) Set-theoretic methods in control. Systems and control: foundations and applications. 2nd edn. Birkhäuser, Basel

  • Blanchini F, Franco E, Giordano G (2012) Determining the structural properties of a class of biological models. In: Proceedings of the IEEE conference on decision and control, pp 5505–5510

  • Blanchini F, Franco E, Giordano G (2014) A structural classification of candidate oscillatory and multistationary biochemical systems. Bull Math Biol 76(10):2542–2569

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Wang R, Li C, Aihara K (2005) Modeling biomolecular networks in cells. Springer, Berlin

    MATH  Google Scholar 

  • Chesi G, Hung Y (2008) Stability analysis of uncertain genetic sum regulatory networks. Automatica 44(9):2298–2305

    Article  MathSciNet  MATH  Google Scholar 

  • Craciun G, Feinberg M (2005) Multiple equilibria in complex chemical reaction networks: I. the injectivity property. SIAM J Appl Math 65(5):1526–1546

  • Craciun G, Feinberg M (2006) Multiple equilibria in complex chemical reaction networks: II. the species-reaction graph. SIAM J Appl Math 66(4):1321–1338

    Article  MathSciNet  MATH  Google Scholar 

  • Dambacher J, Li H, Rossignol P (2002) Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology 83(5):1372–1385

    Article  Google Scholar 

  • Dambacher J, Li H, Rossignol P (2003a) Qualitative predictions in model ecosystems. Ecol Model 161(1–2):79–93

    Article  Google Scholar 

  • Dambacher J, Levins R, Rossignol P (2005) Life expectancy change in perturbed communities: derivation and qualitative analysis. Math Biosci 197(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Dambacher JM, Ramos Jiliberto R (2007) Understanding and predicting effects of modified interactions through a qualitative analysis of community structure. Q Rev Biol 82(3):227–250

    Article  Google Scholar 

  • Dambacher JM, Luh HK, Li HW, Rossignol PA (2003b) Qualitative stability and ambiguity in model ecosystems. Am Nat 161(6):876–888

    Article  Google Scholar 

  • Dambacher JM, Gaughan DJ, Rochet MJ, Rossignol PA, Trenkel VM (2009) Qualitative modelling and indicators of exploited ecosystems. Fish Fish 10(3):305–322

    Article  Google Scholar 

  • De Lenheer P, Angeli D, Sontag ED (2007) Monotone chemical reaction networks. J Math Chem 41(3):295–314

  • Domijan M, Pécou E (2011) The interaction graph structure of mass-action reaction networks. J Math Biol 51(8):1–28

    MATH  Google Scholar 

  • Drengstig T, Ueda HR, Ruoff P (2008) Predicting perfect adaptation motifs in reaction kinetic networks. J Phys Chem B 112(51):16,752–16,758

    Article  Google Scholar 

  • El-Samad H, Prajna S, Papachristodoulou A, Doyle J, Khammash M (2006) Advanced methods and algorithms for biological networks analysis. Proc IEEE 94(4):832–853

    Article  Google Scholar 

  • Farina L, Rinaldi S (2000) Positive linear systems; theory and applications. John Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Feinberg M (1987) Chemical reaction network structure and the stability of complex isothermal reactors I. The deficiency zero and deficiency one theorems. Chem Eng Sci 42(10):2229–2268

  • Feinberg M (1995a) The existence and uniqueness of steady states for a class of chemical reaction networks. Arch Ration Mech Anal 132(4):311–370

    Article  MathSciNet  MATH  Google Scholar 

  • Feinberg M (1995b) Multiple steady states for chemical reaction networks of deficiency one. Arch Ration Mech Anal 132(4):371–406

    Article  MathSciNet  MATH  Google Scholar 

  • Franco E, Blanchini F (2013) Structural properties of the MAPK pathway topologies in PC12 cells. J Math Biol 67:1633–1668

  • Franco E, Murray RM (2008) Design and performance of in vitro transcription rate regulatory circuits. In: Proceedings of the IEEE conference on decision and control

  • Franco E, Forsberg PO, Murray RM (2008) Design, modeling and synthesis of an in vitro transcription rate regulatory circuit. In: Proceedings of the American control conference

  • Franco E, Giordano G, Forsberg PO, Murray RM (2014) Negative autoregulation matches production and demand in synthetic transcriptional networks. ACS Synth Biol 3(8):589–599

  • Giordano G, Franco E, Murray RM (2013) Feedback architectures to regulate flux of components in artificial gene networks. In: Proceedings of the American control conference, pp 4747–4752

  • Gorban A, Radulescu O (2007) Dynamical robustness of biological networks with hierarchical distribution of time scales. IET Syst Biol 1(4):238–246

    Article  Google Scholar 

  • Hale D, Lady G, Maybee J, Quirk J (2014) Nonparametric comparative statics and stability. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Harrison ME, Dunlop MJ (2012) Synthetic feedback loop model for increasing microbial biofuel production using a biosensor. Front Microbiol 3:360

    Article  Google Scholar 

  • Hernandez M-J (2009) Disentangling nature, strength and stability issues in the characterization of population interactions. J Theor Biol 261:107–119

    Article  MathSciNet  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  Google Scholar 

  • Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837

    Article  Google Scholar 

  • Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3(137):1–7

    Google Scholar 

  • Kwon YK, Cho KH (2008) Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24(7):987–994

  • Levchenko A, Iglesias PA (2002) Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82:50–63

    Article  Google Scholar 

  • Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton

    Google Scholar 

  • Levins R (1974) The qualitative analysis of partially specified systems. Ann N Y Acad Sci 231:123–138

    Article  MATH  Google Scholar 

  • Levins R (1975) Evolution in communities near equilibrium. In: Cody M, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 16–50

    Google Scholar 

  • Ma L, Iglesias P (2002) Quantifying robustness of biochemical network models. BMC Bioinform 3(1):38

  • Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138(4):760–773

    Article  Google Scholar 

  • Marzloff MP, Dambacher JM, Johnson CR, Little LR, Frusher SD (2011) Exploring alternative states in ecological systems with a qualitative analysis of community feedback. Ecol Model 222(15):2651–2662

    Article  Google Scholar 

  • May RM (1974) Stability and complexity in model ecosystems, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Mincheva M (2011) Oscillations in biochemical reaction networks arising from pairs of subnetworks. Bull Math Biol 73:2277–2304

    Article  MathSciNet  MATH  Google Scholar 

  • Mincheva M, Craciun G (2008) Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks. Proc IEEE 96(8):1281–1291

    Article  Google Scholar 

  • Mochizuki A, Fiedler B (2015) Sensitivity of chemical reaction networks: a structural approach. 1. Examples and the carbon metabolic network. J Theor Biol 367(2):189–202

    Article  MathSciNet  Google Scholar 

  • Motee N, Chandra F, Bamieh B, Khammash M, Doyle JC (2010) Performance limitations in autocatalytic networks in biology. In: Proceedings of the IEEE conference on decision and control, pp 4715–4720

  • Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138(1):160–171

    Article  Google Scholar 

  • Nikolov S, Yankulova E, Wolkenhauer O, Petrov V (2007) Principal difference between stability and structural stability (robustness) as used in systems biology. Nonlinear Dyn Psychol Life Sci 11(4):413–433

    Google Scholar 

  • Puccia CJ, Levins R (1985) Qualitative modeling of complex systems. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Shinar G, Feinberg M (2010) Structural sources of robustness in biochemical reaction networks. Science 327(5971):1389–1391

    Article  Google Scholar 

  • Shinar G, Milo R, Rodrìguez Martìnez M, Alon U (2007) Input-output robustness in simple bacterial signaling systems. Proc Natl Acad Sci USA 104:19,931–19,935

    Article  Google Scholar 

  • Smith HL (2008) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society, Providence

    Book  Google Scholar 

  • Sontag ED (2003) Adaptation and regulation with signal detection implies internal model. Syst Control Lett 50(2):119–126

    Article  MathSciNet  MATH  Google Scholar 

  • Sontag ED (2007) Monotone and near-monotone biochemical networks. Syst Synth Biol 1:59–87

    Article  Google Scholar 

  • Sontag ED (2014a) A technique for determining the signs of sensitivities of steady states in chemical reaction networks. IET Syst Biol 8:251–267

    Article  Google Scholar 

  • Sontag ED (2014b) Quantifying the effect of interconnections on the steady states of biomolecular networks. In: Proceedings of the IEEE conference on decision and control, pp 5419–5424

  • Spiro PA, Parkinson JS, Othmer HG (1997) A model of excitation and adaptation in bacterial chemotaxis. Proc Natl Acad Sci USA 94(4):7263–7268

    Article  Google Scholar 

  • Steuer R, Waldherr S, Sourjik V, Kollmann M (2011) Robust signal processing in living cells. PLoS Comput Biol 7(11):e1002218

    Article  MathSciNet  Google Scholar 

  • Waldherr S, Streif S, Allgöwer F (2012) Design of biomolecular network modifications to achieve adaptation. IET Syst Biol 6(6):223–231

    Article  Google Scholar 

  • Yeung E, Kim J, Murray RM (2013) Resource competition as a source of non-minimum phase behavior in transcription-translation systems. In: Proceedings of the IEEE conference on decision and control, pp 4060–4067

  • Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97(9):4649–4653

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Blanchini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, G., Cuba Samaniego, C., Franco, E. et al. Computing the structural influence matrix for biological systems. J. Math. Biol. 72, 1927–1958 (2016). https://doi.org/10.1007/s00285-015-0933-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0933-9

Keywords

Mathematics Subject Classification

Navigation