Journal of Mathematical Biology

, Volume 72, Issue 7, pp 1693–1745 | Cite as

Persistence criteria for populations with non-local dispersion

  • Henri Berestycki
  • Jérôme Coville
  • Hoang-Hung Vo
Article

Abstract

In this article, we analyse the non-local model:
$$\begin{aligned} \partial _t u(t,x)=J\star u(t,x) -u(t,x) + f(x,u(t,x)) \quad \text {for }\;t>0,\;\text { and }\; x \in {\mathbb {R}}^N, \end{aligned}$$
where J is a positive continuous dispersal kernel and f(xu) is a heterogeneous KPP type non-linearity describing the growth rate of the population. The ecological niche of the population is assumed to be bounded (i.e. outside a compact set, the environment is assumed to be lethal for the population). For compactly supported dispersal kernels J, we derive an optimal persistence criteria. We prove that a positive stationary solution exists if and only if the generalised principal eigenvalue \(\lambda _p\) of the linear problem
$$\begin{aligned} J\star \varphi -\varphi + \partial _sf(x,0)\varphi +\lambda _p\varphi =0 \quad \text { in }\; {\mathbb {R}}^N, \end{aligned}$$
is negative. \(\lambda _p\) is a spectral quantity that we defined in the spirit of the generalised first eigenvalue of an elliptic operator. In addition, for any continuous non-negative initial data that is bounded or integrable, we establish the long time behaviour of the solution u(tx). We also analyse the impact of the size of the support of the dispersal kernel on the persistence criteria. We exhibit situations where the dispersal strategy has “no impact” on the persistence of the species and other ones where the slowest dispersal strategy is not any more an “Ecological Stable Strategy”. We also discuss persistence criteria for fat-tailed kernels.

Keywords

Heterogeneous KPP nonlocal equation Persistence criteria Dispersal budget Asymptotic behaviours ESS 

Mathematics Subject Classification

Primary 35R09 45K05 92D25 Secondary 45C05 45M20 47B65 

References

  1. Averill I, Lou Y, Munther D (2012) On several conjectures from evolution of dispersal. J Biol Dyn 6(2):117–130CrossRefGoogle Scholar
  2. Bates PW, Zhao G (2007) Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J Math Anal Appl 332(1):428–440MathSciNetCrossRefMATHGoogle Scholar
  3. Berestycki H, Coville J, Vo H (2014) Properties of the principal eigenvalue of some nonlocal operators, PreprintGoogle Scholar
  4. Berestycki H, Diekmann O, Nagelkerke CJ, Zegeling PA (2009) Can a species keep pace with a shifting climate? Bull Math Biol 71(2):399–429MathSciNetCrossRefMATHGoogle Scholar
  5. Berestycki H, Hamel F, Roques L (2005) Analysis of the periodically fragmented environment model. I. Species persistence. J Math Biol 51(1):75–113MathSciNetCrossRefMATHGoogle Scholar
  6. Berestycki H, Hamel F, Rossi L (2007) Liouville-type results for semilinear elliptic equations in unbounded domains. Ann Mat Pura Appl (4) 186(3):469–507MathSciNetCrossRefMATHGoogle Scholar
  7. Berestycki H, Nirenberg L, Varadhan SRS (1994) The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun Pure Appl Math 47(1):47–92MathSciNetCrossRefMATHGoogle Scholar
  8. Berestycki H, Roquejoffre JM, Rossi L (2011) The periodic patch model for population dynamics with fractional diffusion. Discrete Contin Dyn Syst 4(1):1–13MathSciNetCrossRefMATHGoogle Scholar
  9. Berestycki H, Rossi L (2006) On the principal eigenvalue of elliptic operators in \(\mathbb{R}^{N}\) and applications. J Eur Math Soc (JEMS) 8(2):195–215MathSciNetCrossRefMATHGoogle Scholar
  10. Berestycki H, Rossi L (2008) Reaction-diffusion equations for population dynamics with forced speed. I. The case of the whole space. Discrete Contin Dyn Syst 21(1):41–67MathSciNetCrossRefMATHGoogle Scholar
  11. Berestycki H, Rossi L (2009) Reaction-diffusion equations for population dynamics with forced speed. II: cylindrical-type domains. Discrete Contin Dyn Syst 25(1):19–61 (English)MathSciNetCrossRefMATHGoogle Scholar
  12. Berestycki H, Rossi L (2015) Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains. Commun Pure Appl Math 68(6):1014–1065. doi:10.1002/cpa.21536
  13. Bourgain J, Brezis H, Mironescu P (2001) Another look at sobolev spaces. In: Rofman E, Sulem A, Menaldi JL (eds) Optimal control and partial differential equations rofman, vol. A volume in honour of A. Benssoussans 60th birthday, IOS Press, pp 439–455Google Scholar
  14. Brezis H (2002) How to recognize constant functions. connections with sobolev spaces, Uspekhi Mat. Nauk 57:59–74, English version to appear in Russian Math. Surveys, volume in honor of M. VishikGoogle Scholar
  15. Brezis H (2010) Functional analysis, sobolev spaces and partial differential equations, universitext series, Springer, BerlinCrossRefGoogle Scholar
  16. Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87(9):1217–1227CrossRefGoogle Scholar
  17. Cantrell RS, Cosner C (1991) Diffusive logistic equations with indefinite weights: population models in disrupted environments II. SIAM J Math Anal 22(4):1043–1064MathSciNetCrossRefMATHGoogle Scholar
  18. Cantrell RS, Cosner C (1998) On the effects of spatial heterogeneity on the persistence of interacting species. J Math Biol 37(2):103–145MathSciNetCrossRefMATHGoogle Scholar
  19. Cantrell RS, Cosner C, Lou Y (2006) Movement toward better environments and the evolution of rapid diffusion. Math Biosci 204(2):199–214MathSciNetCrossRefMATHGoogle Scholar
  20. Cantrell RS, Cosner C, Lou Y (2008) Approximating the ideal free distribution via reaction-diffusion-advection equations. J Differ Equ 245(12):3687–3703MathSciNetCrossRefMATHGoogle Scholar
  21. Cantrell RS, Cosner C, Ruan S (2009) Spatial ecology. Chapman & Hall/CRC Mathematical & Computational Biology, Taylor & Francis, LondonMATHGoogle Scholar
  22. Chen X, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction-diffusion-advection model. J Math Biol 57(3):361–386MathSciNetCrossRefMATHGoogle Scholar
  23. Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat 152(2):204–224CrossRefGoogle Scholar
  24. Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C, Schupp E, Webb T III, Wyckoff P (1998) Reid’s paradox of rapid plant migration. BioScience 48:13–24CrossRefGoogle Scholar
  25. Cosner C (2005) A dynamic model for the ideal-free distribution as a partial differential equation. Theor Popul Biol 67(2):101–108CrossRefMATHGoogle Scholar
  26. Cosner C (2014) Reaction-diffusion-advection models for the effects and evolution of dispersal. Discret Contin Dyn Syst 34(5):1701–1745MathSciNetCrossRefMATHGoogle Scholar
  27. Cosner C, Dávila J, Martínez S (2012) Evolutionary stability of ideal free nonlocal dispersal. J Biol Dyn 6(2):395–405MathSciNetCrossRefGoogle Scholar
  28. Cosner C, Lou Y (2003) Does movement toward better environments always benefit a population? J Math Anal Appl 277(2):489–503MathSciNetCrossRefMATHGoogle Scholar
  29. Coville J (2010) On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators. J Differ Equ 249(11):2921–2953MathSciNetCrossRefMATHGoogle Scholar
  30. Coville J (2012) Harnack type inequality for positive solution of some integral equation. Annali di Matematica Pura ed Applicata 191(3):503–528 (English)MathSciNetCrossRefMATHGoogle Scholar
  31. Coville J (2015) Nonlocal refuge model with a partial control. Discret Contin Dyn Syst 35(4):1421–1446. doi:10.3934/dcds.2015.35.1421
  32. Coville J (2013) Singular measure as principal eigenfunction of some nonlocal operators. Appl Math Lett 26:831–835Google Scholar
  33. Coville J, Dávila J, Martínez S (2008) Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM J Math Anal 39(5):1693–1709MathSciNetCrossRefMATHGoogle Scholar
  34. Coville J, Dávila J, Martínez S (2008) Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ Equ 244(12):3080–3118MathSciNetCrossRefMATHGoogle Scholar
  35. Coville J, Dávila J, Martínez S (2013) Pulsating fronts for nonlocal dispersion and kpp nonlinearity. Ann I H Poincare AN 30:179–223MathSciNetCrossRefMATHGoogle Scholar
  36. Dieckmann U (1997) Can adaptive dynamics invade? Trends Ecol Evol 12:128–131CrossRefGoogle Scholar
  37. Diekmann O (2004) A beginners guide to adaptive dynamics, Banach Center Publication, vol 63 Insitute of Mathematics, Polish Academy of Sciences, pp 47–86Google Scholar
  38. Dockery J, Hutson V, Mischaikow K, Pernarowski M (1998) The evolution of slow dispersal rates: a reaction diffusion model. J Math Biol 37(1):61–83 (English)MathSciNetCrossRefMATHGoogle Scholar
  39. Englander J, Pinsky RG (1999) On the construction and support properties of measure-valued diffusions on d[image] with spatially dependent branching. Ann Probab 27(2):684–730 (English)MathSciNetCrossRefMATHGoogle Scholar
  40. Fife PC (1996) An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math., vol 177, Dekker, New York, pp 137–145Google Scholar
  41. Garcia-Melian J, Rossi JD (2009) A logistic equation with refuge and nonlocal diffusion. Commun Pure Appl Anal 8(6):2037–2053MathSciNetCrossRefMATHGoogle Scholar
  42. García-Melián J, Rossi JD (2009) On the principal eigenvalue of some nonlocal diffusion problems. J Differ Equ 246(1):21–38MathSciNetCrossRefMATHGoogle Scholar
  43. Grinfeld M, Hines G, Hutson V, Mischaikow K, Vickers GT (2005) Non-local dispersal. Differ Integral Equ 18(11):1299–1320MathSciNetMATHGoogle Scholar
  44. Hambrock R, Lou Y (2009) The evolution of conditional dispersal strategies inspatially heterogeneous habitats. Bull Math Biol 71(8):1793–1817 (English)MathSciNetCrossRefMATHGoogle Scholar
  45. Hamilton WD (1967) Extraordinary sex ratios. Science 156(3774):477–488CrossRefGoogle Scholar
  46. Hapca S, Crawford JW, Young IM (2009) Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level. J R Soc Interf 6(30):111–122CrossRefGoogle Scholar
  47. Hastings A (1983) Can spatial variation alone lead to selection for dispersal? Theor Popul Biol 24(3):244–251MathSciNetCrossRefMATHGoogle Scholar
  48. Hutson V, Martinez S, Mischaikow K, Vickers GT (2003) The evolution of dispersal. J Math Biol 47(6):483–517MathSciNetCrossRefMATHGoogle Scholar
  49. Hutson V, Mischaikow K, Poláčik P (2001) The evolution of dispersal rates in a heterogeneous time-periodic environment. J Math Biol 43(6):501–533MathSciNetCrossRefMATHGoogle Scholar
  50. Ignat L, Rossi JD, San Antolin A (2012) Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space. J Differ Equ 252(12):6429–6447MathSciNetCrossRefMATHGoogle Scholar
  51. Kao C-Y, Lou Y, Shen W (2010) Random dispersal vs. nonlocal dispersal. Discret Contin Dyn Syst 26(2):551–596MathSciNetMATHGoogle Scholar
  52. Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal patterns on stream populations. SIAM Rev 47(4):749–772 (electronic)MathSciNetCrossRefMATHGoogle Scholar
  53. Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, Van Heerwaarden JS (1996) Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. Stoch Spat Struct Dyn Syst 45:183–231MathSciNetMATHGoogle Scholar
  54. Nadin G, Rossi L (2012) Propagation phenomena for time heterogeneous KPP reaction-diffusion equations. J Math Pures Appl 98(6):633–653Google Scholar
  55. Petrovskii S, Mashanova A, Jansen VAA (2011) Variation in individual walking behavior creates the impression of a lévy flight. Proc Natl Acad Sci 108(21):8704–8707CrossRefGoogle Scholar
  56. Pinchover Y (1988) On positive solutions of second-order elliptic equations, stability results, and classification. Duke Math J 57(3):955–980 (English)MathSciNetCrossRefMATHGoogle Scholar
  57. Ponce AC (2004) An estimate in the spirit of poincarés inequality. J Eur Math Soc (JEMS) 6(1):1–15MathSciNetCrossRefMATHGoogle Scholar
  58. Ponce AC (2004) A new approach to sobolev spaces and connections to \(\mathbf{\Gamma }\)-convergence. Calc Variat Partial Differ Equ 19(3):229–255MathSciNetCrossRefGoogle Scholar
  59. Rawal N, Shen W (2012) Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications. J Dyn Differ Equ 24(4):927–954 (English)MathSciNetCrossRefMATHGoogle Scholar
  60. Schurr FM, Steinitz O, Nathan R (2008) Plant fecundity and seed dispersal in spatially heterogeneous environments: models, mechanisms and estimation. J Ecol 96(4):628–641CrossRefGoogle Scholar
  61. Shen W (2004) Traveling waves in diffusive random media. J Dyn Diff Eqns 16:1011–1060MathSciNetCrossRefMATHGoogle Scholar
  62. Shen W, Zhang A (2012) Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats. Proc Am Math Soc 140(5):1681–1696 (English)MathSciNetCrossRefMATHGoogle Scholar
  63. Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates, SunderlandGoogle Scholar
  64. Vincent Thomas L, Brown Joel S (2005) Evolutionary game theory, natural selection, and darwinian dynamics. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Henri Berestycki
    • 1
  • Jérôme Coville
    • 2
  • Hoang-Hung Vo
    • 3
  1. 1.CAMS - École des Hautes Études en Sciences SocialesParisFrance
  2. 2.UR 546 Biostatistique et Processus Spatiaux, INRAAvignonFrance
  3. 3.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityViet Nam

Personalised recommendations