Skip to main content
Log in

Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We are interested in the long-time behavior of a diploid population with sexual reproduction and randomly varying population size, characterized by its genotype composition at one bi-allelic locus. The population is modeled by a 3-dimensional birth-and-death process with competition, weak cooperation and Mendelian reproduction. This stochastic process is indexed by a scaling parameter \(K\) that goes to infinity, following a large population assumption. When the individual birth and natural death rates are of order \(K\), the sequence of stochastic processes indexed by \(K\) converges toward a new slow-fast dynamics with variable population size. We indeed prove the convergence toward 0 of a fast variable giving the deviation of the population from quasi Hardy–Weinberg equilibrium, while the sequence of slow variables giving the respective numbers of occurrences of each allele converges toward a 2-dimensional diffusion process that reaches (0,0) almost surely in finite time. The population size and the proportion of a given allele converge toward a Wright-Fisher diffusion with stochastically varying population size and diploid selection. We insist on differences between haploid and diploid populations due to population size stochastic variability. Using a non trivial change of variables, we study the absorption of this diffusion and its long time behavior conditioned on non-extinction. In particular we prove that this diffusion starting from any non-trivial state and conditioned on not hitting (0,0) admits a unique quasi-stationary distribution. We give numerical approximations of this quasi-stationary behavior in three biologically relevant cases: neutrality, overdominance, and separate niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ball K, Kurtz TG, Popovic L, Rempala G (2006) Asymptotic analysis of multiscale approximations to reaction networks. Ann Appl Probab 16(4):1925–1961

    Article  MATH  MathSciNet  Google Scholar 

  • Berglund N, Gentz B (2006) Noise-induced phenomena in slow-fast dynamical systems. Probability and its applications (New York). Springer-verlag, London Ltd., London

    Google Scholar 

  • Burdzy K, Holyst R, Ingerman D, March P (1996) Configurational transition in a fleming-viot-type model and probabilistic interpretation of laplacian eigenfunctions. J Phys A 29(11):2633–2642

    Article  MATH  Google Scholar 

  • Cattiaux P, Collet P, Lambert A, Martínez S, Méléard S, San Martín J (2009) Quasi-stationary distributions and diffusion models in population dynamics. Ann Probab 37(5):1926–1969

    Article  MATH  MathSciNet  Google Scholar 

  • Cattiaux P, Méléard S (2010) Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction. J Math Biol 60(6):797–829

    Article  MATH  MathSciNet  Google Scholar 

  • Champagnat N (2006) A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stochastic Process Appl 116(8):1127–1160

    Article  MATH  MathSciNet  Google Scholar 

  • Champagnat N, Ferrière R, Méléard S (2006) Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor Popul Biol 69:297–321

    Article  MATH  Google Scholar 

  • Champagnat N, Méléard S (2007) Invasion and adaptive evolution for individual-based spatially structured populations. J Math Biol 55:147–188

    Article  MATH  MathSciNet  Google Scholar 

  • Collet P, Méléard S, Metz JA (2013) A rigorous model study of the adaptive dynamics of Mendelian diploids. J Math Biol 67(3):569–607

    Article  MATH  MathSciNet  Google Scholar 

  • Coron C (2014) Stochastic modeling of density-dependent diploid populations and extinction vortex. Adv Appl Probab 46:446–477

    Article  MATH  MathSciNet  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row Publishers, New York

    MATH  Google Scholar 

  • Depperschmidt A, Greven A, Pfaffelhuber P (2012) Tree-valued Fleming-Viot dynamics with mutation and selection. Ann Appl Probab 22(6):2560–2615

    Article  MATH  MathSciNet  Google Scholar 

  • Ethier SN, Kurtz TG (1986) Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York

    Google Scholar 

  • Ethier SN, Nagylaki T (1980) Diffusion approximations of markov chains with two time scales and applications to population genetics. Adv App Probab 12(1):14–49

    Article  MATH  MathSciNet  Google Scholar 

  • Ethier SN, Nagylaki T (1988) Diffusion approximations of markov chains with two time scales and applications to population genetics, ii. Adv App Probab 20(3):525–545

    Article  MATH  MathSciNet  Google Scholar 

  • Foucart C, Hénard O (2013) Stable continuous-state branching processes with immigration and beta-fleming-viot processes with immigration. Electron J Probab 18(23):1–21

    MathSciNet  Google Scholar 

  • Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14(4):1880–1919

    Article  MATH  MathSciNet  Google Scholar 

  • Hofbauer J, Schuster P, Sigmund K (1982) Game dynamics in mendelian populations. Biol Cybernetics 43(1):51–57

    Article  MATH  MathSciNet  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hoppensteadt F (1975) Mathematical theories of populations: demographics, genetics and epidemics. Regional conference series in applied mathematics. Society for Industrial and Applied Mathematics

  • Joffe A, Métivier M (1986) Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv Appl Probab 18(1):20–65

    Article  MATH  Google Scholar 

  • Katzenberger GS (1991) Solutions of a stochastic differential equation forced onto a manifold by a large drift. Ann Probab 19(4):1587–1628

    Article  MATH  MathSciNet  Google Scholar 

  • Kurtz TG (1992) Averaging for martingale problems and stochastic approximation. In: Applied stochastic analysis (New Brunswick, NJ, 1991), volume 177 of Lecture Notes in Control and Inform Sci, pp 186–209. Springer, Berlin

  • Méléard S, Tran VC (2012) Slow and fast scales for superprocess limits of age-structured populations. Stochastic Process Appl 122(1):250–276

    Article  MATH  MathSciNet  Google Scholar 

  • Méléard S, Villemonais D (2012) Quasi-stationary distributions and population processes. Probab Surv 9:340–410

    Article  MATH  MathSciNet  Google Scholar 

  • Nagylaki T (1992) Introduction to theoretical population genetics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Nagylaki T, Crow J (1974) Continuous selective models. Theor Popul Biol 5:257–283

    Article  MATH  Google Scholar 

  • Norton H (1928) Natural selection and mendelian variation. Proc Lond Math Soc 2(1):1–45

    Article  MathSciNet  Google Scholar 

  • Papanicolaou GC, Stroock D, Varadhan SRS (1977) Martingale approach to some limit theorems. In: Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Paper No. 6, pp ii+120. Duke Univ. Math. Ser., Vol. III. Duke Univ., Durham, N.C

  • Pardoux E, Wakolbinger A (2014) A path-valued markov process indexed by the ancestral mass. Arxiv:1411.2526

  • Pinsky RG (1995) Positive harmonic functions and diffusion, volume 45 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stroock DW, Varadhan SRS (1979) Multidimensional diffusion processes, volume 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin

    Google Scholar 

  • Villemonais D (2011) Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift. Electron J Probab 16(61):1663–1692

    MATH  MathSciNet  Google Scholar 

  • Villemonais D (2013) General approximation method for the distribution of markov processes conditioned not to be killed. ESAIM: Probability and Statistics, eFirst

Download references

Acknowledgments

I fully thank my Ph.d. director Sylvie Méléard for suggesting me this research subject, and for her continual guidance during my work. I would also like to thank Denis Villemonais for his help for the simulation results. This article benefited from the support of the ANR MANEGE (ANR-09-BLAN-0215) and from the Chair “Modélisation Mathématique et Biodiversité” of Veolia Environnement—École Polytechnique—Museum National d’Histoire Naturelle—Fondation X. This work was partially supported by the FMJH through the grant no ANR-10-CAMP-0151-02 in the “Programme des Investissements d’Avenir”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Coron.

Appendices

Appendix 1: Extension to non-neutral leading-order dynamics

The scaling assumption presented in Eq. (3.1) and considered throughout the whole article can be extended as presented in this section. Let us consider \(\gamma _1>0\), \(\gamma _2>0\) and \(\gamma _3>0\) such that \(2\gamma _2=\gamma _1+\gamma _3\), and let us assume

$$\begin{aligned} \begin{aligned} b^{i,K}&= \gamma _i K+\beta _i\in [0,\infty [\\ d^{i,K}&= \gamma _i K+\delta _i\in [0,\infty [\\ c_{ij}^K&=\frac{\alpha _{ij}}{K}\in \mathbb {R}\\ Z^K_0&\underset{K\rightarrow \infty }{\rightarrow } Z_0 \quad \hbox {in law,} \end{aligned} \end{aligned}$$

where \(Z_0\) is a \((\mathbb {R}_+)^3\)-valued random variable. Under this more general scaling, the decomposition of the infinitesimal generator \(L^K\) presented in Eq. (3.2) becomes:

$$\begin{aligned} L^Kf(z)= & {} K^2y\left[ \gamma _1f\left( z-\frac{e_1}{K}\right) -2\gamma _2f\left( z-\frac{e_2}{K}\right) +\gamma _3f\left( z-\frac{e_3}{K}\right) \right] \\&+\,\gamma _1 K^2n\,(x)^2\left[ f\left( z+\frac{e_1}{K}\right) +f\left( z-\frac{e_1}{K}\right) -2f\left( z\right) \right] \\&+\,\gamma _2 K^22nx(1-x)\left[ f\left( z+\frac{e_2}{K}\right) +f\left( z-\frac{e_2}{K}\right) -2f\left( z\right) \right] \\&+\,\gamma _3 K^2n\left( 1-x\right) ^2\left[ f\left( z+\frac{e_3}{K}\right) +f\left( z-\frac{e_3}{K}\right) -2f(z)\right] \\&+\,\beta _1Kn\,(x)^2\left[ f\left( z+\frac{e_1}{K}\right) -f(z)\right] \\&+\,\beta _2K2nx(1-x)\left[ f\left( z+\frac{e_2}{K}\right) -f(z)\right] \\&+\,\beta _3Kn(1-x)^2\left[ f\left( z+\frac{e_3}{K}\right) -f(z)\right] \\&+\,K\underset{i\in \{1,2,3\}}{\sum }\left( \delta _i+\underset{j\in \{1,2,3\}}{\sum }\alpha _{ji}z_j\right) z_i\left[ f\left( z-\frac{e_i}{K}\right) -f(z)\right] \\&+\,K\underset{i\in \{1,2,3\}}{\sum }\left( \gamma _i K+\delta _i+\underset{j\in \{1,2,3\}}{\sum }\alpha _{ji}z_j\right) ^-z_i\left[ f\left( z-\frac{e_i}{K}\right) -f(z)\right] . \end{aligned}$$

In this case, setting \(\gamma =\inf _i \gamma _i\), we still obtain as in the proof of Proposition 2,

$$\begin{aligned} \begin{aligned} \frac{d\mathbb {E}\left( (Y^K_t)^2\right) }{dt}&\le -2\gamma K\mathbb {E}\left( (Y^K_t)^2\right) +C \end{aligned} \end{aligned}$$

and therefore the convergence toward quasi Hardy–Weinberg equilibrium when \(K\rightarrow \infty \). As in Theorem 1, the sequence of stochastic processes \((N^{A,K},N^{a,K})\) then converges toward a 2-dimensional diffusion process whose infinitesimal generator \(L\) is defined for all function \(f\in \mathcal {C}^2_b((\mathbb {R}_+)^2, \mathbb {R})\) for all \((n^A,n^a)\in (\mathbb {R}_+)^2\) by

$$\begin{aligned} Lf(n^A,n^a)= & {} \frac{n^A}{n^A+n^a}\Bigg [\Big (\beta _1-\delta _1-\frac{\alpha _{11}(n^A)^2+\alpha _{21}2n^An^a+\alpha _{31}(n^a)^2}{2(n^A+n^a)}\Big )n^A\\&+\,\Big (\beta _2-\delta _2-\frac{\alpha _{12}(n^A)^2+\alpha _{22}2n^An^a+\alpha _{32}(n^a)^2}{2(n^A+n^a)}\Big )n^a\Bigg ]\frac{\partial f}{\partial n^A}(n^A,n^a)\\&+\,\frac{n^a}{n^A+n^a}\Bigg [\Big (\beta _3-\delta _3-\frac{\alpha _{13}(n^A)^2+\alpha _{23}2n^An^a+\alpha _{33}(n^a)^2}{2(n^A+n^a)}\Big )n^a\\&+\,\Big (\beta _2-\delta _2-\frac{\alpha _{12}(n^A)^2+\alpha _{22}2n^An^a+\alpha _{32}(n^a)^2}{2(n^A+n^a)}\Big )n^A\Bigg ]\frac{\partial f}{\partial n^a}(n^A,n^a)\\&+\,\frac{n^A}{2}\Bigg [\gamma _1\Big (1+\frac{3n^A}{n^A+n^a}\Big )+\gamma _3\Big (\frac{n^a}{n^A+n^a}\Big )\Bigg ]\frac{\partial ^2 f}{\partial (n^A)^2}(n^A,n^a)\\&+\,(\gamma _1+\gamma _3)\frac{n^An^a}{n^A+n^a}\frac{\partial ^2 f}{\partial n^A\partial n^a}(n^A,n^a)\\&+\,\frac{n^a}{2}\Bigg [\gamma _3\Big (1+\frac{3n^a}{n^A+n^a}\Big )+\gamma _1\Big (\frac{n^A}{n^A+n^a}\Big )\Bigg ]\frac{\partial ^2 f}{\partial (n^a)^2}(n^A,n^a). \end{aligned}$$

Appendix 2: Calculations in the general case

1.1 Form of the function \(\varvec{Q}\)

If \(\alpha \) is symmetric, we use Eqs. (4.6), (4.7) and (4.8) and look for a function \(Q\) such that \(\frac{\partial Q(s)}{\partial s_1}=q_1(S)\) and \(\frac{\partial Q(s)}{\partial s_2}=q_2(S)\). After calculating the partial derivatives of functions of the form:

$$\begin{aligned} (s_1,s_2)\mapsto \left\{ \begin{array}{l} ((s_1)^2+(s_2)^2)^k\cos ^l\left( \sqrt{2}\arctan \left( \frac{s_2}{s_1}\right) \right) \quad \hbox {if}\, s_1\ge 0 \\ ((s_1)^2+(s_2)^2)^k\cos ^l\left( \sqrt{2}\arctan \left( \frac{s_2}{s_1}+\pi \right) \right) \quad \hbox {if}\, s_1\le 0 \end{array}\right. \end{aligned}$$

for \(k\in \{1,2\}\) and \(l\in \{1,2,3,4\}\), we find that

$$\begin{aligned} Q(s)=\left\{ \begin{array}{l} \frac{\ln ((s_1)^2+(s_2)^2)}{2}+\frac{1}{2}\ln \left( \sin \left( \sqrt{2}\arctan \left( \frac{s_2}{s_1}\right) \right) \right) \\ \quad -\frac{(s_1)^2+(s_2)^2}{4}\left[ \frac{\beta _1-\delta _1+2(\beta _2-\delta _2)+\beta _3-\delta _3}{4}-\frac{(s_1)^2+(s_2)^2}{4}\gamma \frac{\alpha _{11}+4\alpha _{12}+2\alpha _{13} +4\alpha _{23}+4\alpha _{22}+\alpha _{33}}{16}\right] \\ \quad -\,((s_1)^2+(s_2)^2)\left[ h(s)\frac{\beta _1-\delta _1-(\beta _3-\delta _3)}{8}+h(s)^2\frac{\beta _1-\delta _1-2(\beta _2-\delta _2)+\beta _3-\delta _3}{16}\right] \\ \quad +\,\frac{((s_1)^2+(s_2)^2)^2}{16}\gamma h(s)\left[ \frac{\alpha _{11}+2\alpha _{12}-2\alpha _{23}-\alpha _{33}}{4}+h(s)\frac{3\alpha _{11}-2\alpha _{13}-4\alpha _{22}+3\alpha _{33}}{8}\right. \\ \quad \left. +h(s)^2\frac{\alpha _{11}-2\alpha _{12}+2\alpha _{23}-\alpha _{33}}{4}+h(s)^3\frac{\alpha _{11}-4\alpha _{12} \quad +\,2\alpha _{13}-4\alpha _{23}+4\alpha _{22}+\alpha _{33}}{16}\right] \quad \hbox {if}\, s_1\ge 0 \\ \frac{\ln ((s_1)^2+(s_2)^2)}{2}+\frac{1}{2}\ln \left( \sin \left( \sqrt{2}\left( \arctan \left( \frac{s_2}{s_1}\right) +\pi \right) \right) \right) \\ \quad -\frac{(s_1)^2+(s_2)^2}{4}\left[ \frac{\beta _1-\delta _1+2(\beta _2-\delta _2)+\beta _3-\delta _3}{4}-\frac{(s_1)^2+(s_2)^2}{4}\gamma \frac{\alpha _{11}+4\alpha _{12}+2\alpha _{13} +4\alpha _{23}+4\alpha _{22}+\alpha _{33}}{16}\right] \\ \quad -\,((s_1)^2+(s_2)^2)\left[ h(s)\frac{\beta _1-\delta _1-(\beta _3-\delta _3)}{8}+h(s)^2\frac{\beta _1-\delta _1-2(\beta _2-\delta _2)+\beta _3-\delta _3}{16}\right] \\ \quad +\,\frac{((s_1)^2+(s_2)^2)^2}{16}\gamma h(s)\left[ \frac{\alpha _{11}+2\alpha _{12}-2\alpha _{23}-\alpha _{33}}{4}+h(s)\frac{3\alpha _{11}-2\alpha _{13}-4\alpha _{22}+3\alpha _{33}}{8}\right. \\ \quad \left. +\,h(s)^2\frac{\alpha _{11}-2\alpha _{12}+2\alpha _{23}-\alpha _{33}}{4}+h(s)^3\frac{\alpha _{11}-4\alpha _{12} +2\alpha _{13}-4\alpha _{23}+4\alpha _{22}+\alpha _{33}}{16}\right] \quad \hbox {if}\, s_1\le 0 \end{array}\right. \nonumber \\ \end{aligned}$$
(5.1)

where

$$\begin{aligned} h(s)=\left\{ \begin{array}{l}\cos \left( \sqrt{2}\arctan \left( \frac{s_2}{s_1}\right) \right) \quad \hbox {when}\, s_1\ge 0 \\ \cos \left( \sqrt{2}\left( \arctan \left( \frac{s_2}{s_1}\right) +\pi \right) \right) \quad \hbox {when}\, s_1\le 0.\end{array}\right. \end{aligned}$$

1.2 Form of the function \(\varvec{q}\)

Therefore if \(s_1\ge 0\):

$$\begin{aligned} q_1(s)= & {} \frac{s_1}{(s_1)^2+(s_2)^2}-\frac{s_2}{(s_1)^2+(s_2)^2}\frac{1}{\sqrt{2}\tan \left( \sqrt{2}\arctan \left( \frac{s_2}{s_1}\right) \right) }\nonumber \\&-\,s_1\left[ \frac{\beta _1-\delta _1+2(\beta _2-\delta _2)+\beta _3-\delta _3}{8}\right. \nonumber \\&\left. -\,\frac{(s_1)^2+(s_2)^2}{4}\gamma \frac{\alpha _{11}+4\alpha _{12}+2\alpha _{13}+4\alpha _{23}+4\alpha _{22}+\alpha _{33}}{16}\right] \nonumber \\&-\,2s_1\left[ h(s)\frac{\beta _1-\delta _1-(\beta _3-\delta _3)}{8}+h(s)^2\frac{\beta _1-\delta _1-2(\beta _2-\delta _2)+\beta _3-\delta _3}{16}\right] \nonumber \\&+\,s_1\frac{((s_1)^2+(s_2)^2)}{4}\gamma h(s)\left[ \frac{\alpha _{11}+2\alpha _{12}-2\alpha _{23}-\alpha _{33}}{4}\right. \nonumber \\&+\,h(s)\frac{3\alpha _{11}-2\alpha _{13}-4\alpha _{22}+3\alpha _{33}}{8}\nonumber \\&+\,\left. h(s)^2\frac{\alpha _{11}-2\alpha _{12}+2\alpha _{23}-\alpha _{33}}{4}+h(s)^3\frac{\alpha _{11}\!-\!4\alpha _{12}+\!2\alpha _{13}-\!4\alpha _{23}+4\alpha _{22}\alpha _{33}}{16}\right] \nonumber \\&-\,\sqrt{2}s_2\sin \left( \sqrt{2}\arctan \left( \frac{s_2}{s_1}\right) \right) \left[ \frac{\beta _1-\delta _1-(\beta _3-\delta _3)}{8}\right. \nonumber \\&\left. +\,h(s)\frac{\beta _1-\delta _1-2(\beta _2-\delta _2)+\beta _3-\delta _3}{8}\right] \nonumber \\&+\,\frac{(s_1)^2+(s_2)^2}{16}\gamma \sqrt{2}s_2\sin \left( \sqrt{2}\arctan \left( \frac{s_2}{s_1}\right) \right) \left[ \frac{\alpha _{11}+2\alpha _{12}-2\alpha _{23}-\alpha _{33}}{4}\right. \nonumber \\&+\,h(s)\frac{3\alpha _{11}-2\alpha _{13}-4\alpha _{22}+3\alpha _{33}}{4}\nonumber \\&\left. +\,h(s)^2\frac{3(\alpha _{11}\!-2\alpha _{12}+\alpha _{23}\!-\alpha _{33})}{4}\right. \nonumber \\&\left. +\,h(s)^3\frac{\alpha _{11}-4\alpha _{12}+2\alpha _{13}-4\alpha _{23}+4\alpha _{22}+\alpha _{33}}{4}\right] . \end{aligned}$$
(5.2)

We have similar formulas for \(q_2\) and when \(s_1\le 0\).

1.3 Proof of Proposition 8

Recall that

$$\begin{aligned} F(s)=\vert \nabla Q(s)\vert ^2-{\varDelta } Q(s)=(q_1(s))^2+(q_2(s))^2-\frac{\partial q_1}{\partial s_1}(s)-\frac{\partial q_2}{\partial s_2}(s). \end{aligned}$$

Besides, note that under (H1), \(\frac{\alpha _{11}+4\alpha _{12}+2\alpha _{13}+4\alpha _{23}+4\alpha _{22}+\alpha _{33}}{16}>0\). Therefore using Eqs. (4.6) and (4.7) we easily obtain that there exists a positive constant \(C_1\) such that \((q_1(s))^2+(q_2(s))^2\ge C_1((s_1)^2+(s_2)^2)^3\). Finally, from Eq. (5.2), we obtain after some calculations that there exists a positive constant \(C_2\) such that \(\frac{\partial q_1}{\partial s_1}(s)+\frac{\partial q_2}{\partial s_2}(s)\le C_2((s_1)^2+(s_2)^2)^2\). Therefore Proposition 8 is true if \(s_1\ge 0\). If \(s_1\le 0\), the result is true as well by symmetry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coron, C. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size. J. Math. Biol. 72, 171–202 (2016). https://doi.org/10.1007/s00285-015-0878-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0878-z

Keywords

Mathematics Subject Classification

Navigation