## Abstract

The hypothesis that infection prevalence in a population correlates negatively with variance in the susceptibility of its individuals has support from experimental, field, and theoretical studies. However, its generality has never been formally demonstrated. Here we formulate an endemic SIS model with individual susceptibility distributed according to a discrete or continuous probability function to assess the generality of such hypothesis. We introduce an ordering among susceptibility distributions with the same mean, analogous to that considered in Katriel (J Math Biol 65:237–262, 2012) to order the attack rates in an epidemic SIR model with heterogeneity. It turns out that if one distribution dominates another in this order then it has greater variance and corresponds to a lower infection prevalence for \(R_0\) varying in a suitable maximal interval of the form \(]1, R_0^*].\) We show that in both the discrete and continuous frameworks \(R_0^*\) can be finite, so that the expected correlation among variance and prevalence does not always hold. For discrete distributions this fact is demonstrated analytically, and the proof introduces a constructive procedure to find ordered pairs for which \(R_0^*\) is arbitrarily close to \(1.\) For continuous distributions our conclusion is based on numerical studies with the beta distribution. Finally, we present explicit partial orderings among discrete susceptibility distributions and among symmetric beta distributions which guarantee that \(R_0^*=+\infty \).

This is a preview of subscription content, log in to check access.

## References

Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

Anderson RM, Medley GF, May RM, Johnson AM (1986) A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J Math Appl Med Biol 3:229–263

Andersson H, Britton T (1998) Heterogeneity in epidemic models and its effect on the spread of infection. J Appl Probab 35:651–661

Ball F (1985) Deterministic and stochastic epidemics with several kinds of susceptibles. Adv Appl Probab 17:1–22

Coutinho FAB, Massad E, Lopez LF, Burattini MN, Struchiner CJ, Azevedo-Neto RS (1999) Modelling heterogeneities in individual frailties in epidemic models. Math Comput Model 30:97–115

Diekmann O, Heesterbeek (1999) Mathematical epidemiology of infectious diseases., Wiley Series in Mathematical and Computational BiologyWiley, Chichester

Dwyer G, Dushoff J, Elkinton JS, Levin SA (2000) Pathogen-driven outbreaks in forest defoliators revisited: building models from experimental data. Am Nat 156:105–120

Gomes MGM, Aguas R, Lopes JS, Nunes MC, Rebelo C, Rodrigues P, Struchiner CJ (2012) How host heterogeneity governs tuberculosis reinfection. Proc R Soc B 279:2473–2478

Gomes MGM, Lipsitch M, Wargo AR, Kurath G, Rebelo C, Medley GF, Coutinho A (2014) A missing dimension in measures of vaccination impacts. PLoS Pathog 10(3):e1003849. doi:10.1371/journal.ppat.1003849

Hickson RI, Roberts MG (2014) How population heterogeneity in susceptibility and infectivity influences epidemic dynamics. J Theor Biol 350(7):70–80

Hyman JM, Stanley EA (1988) Using mathematical models to understand the AIDS epidemic. Math Biosci 90:415–473

Katriel G (2012) The size of epidemics in populations with heterogeneous susceptibility. J Math Biol 65:237–262

Lloyd-Smith JO, Schreiber JS, Kopp PE, Getz W (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359

Miller JC (2007) Epidemic size and probability in populations with heterogeneous infectivity and susceptibility. Phys Rev E 76:010101

Novozhilov A (2008) On the spread of epidemics in a closed heterogeneous population. Math Biosci 215:177–185

Pastor-Satorras R, Vespignani V (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63:066117

Pessoa D, Souto-Maior C, Lopes JS, Gjini E, Ceña B, Codeço CT, Gomes MGM (2014) Unveiling time in dose-response models to infer host susceptibility to pathogens. PLoS Comput Biol 10(8):e1003773

Rodrigues P, Margheri A, Rebelo C, Gomes MGM (2009) Heterogeneity in susceptibility to infection can explain high reinfection rates. J Theor Biol 259:280–290

Smith DL, Dushoff J, Snow RW, Hay SI (2005) The entomological inoculation rate and

*Plasmodium falciparum*infection in African children. Nature 438:492–495

## Acknowledgments

We thank the referees for their useful comments, which helped to improve both the presentation and the mathematical contents of this work.

## Author information

### Affiliations

### Corresponding author

## Additional information

A. Margheri and C. Rebelo were supported by Fundação para a Ciência e a Tecnologia, PEst, OE/MAT/UI0209/2011 and project PTDC/MAT/113383/2009.

## Appendix

### Appendix

###
*Proof (Proposition 1)*

The fact that \(\varOmega _{\bar{s}}\) is an open subset of the manifold defined by (3) and Eq. (5) is a direct consequence of its definition. To see that the set \(\varOmega _{\bar{s}}\) is not empty, we argue as follows. Fix any \(\alpha _0\) satisfying (3) and consider the continuous function \(\varPsi _{\alpha _0}(a)=a\cdot \alpha _0,\) where the dot denotes the standard inner product in \({\mathbb {R}}^n.\) Observe that it is possible to satisfy (4) choosing every \(a_i,\,\,i=1,\ldots ,n,\) either arbitrarily close to zero or arbitrarily close to one. We conclude that the image through \(\varPsi _{\alpha _0}\) of the set \(\{ a\in {\mathbb {R}}^{n} : a\quad \text{ satisfies }\,\, (4)\}\) is the whole interval \(]0,1[\) and therefore \(\varOmega _{\bar{s}}\ne \emptyset .\)

Finally, we show that the set \(\varOmega _{\bar{s}}\) is path-wise connected. The discussion above implies that, fixed \(\alpha _0\) satisfying (3), the set \(\{(a,\alpha _0) : a\in {\mathbb {R}}^n \}\cap \varOmega _{\bar{s}}\ne \emptyset .\) Actually, this slice of \(\varOmega _{\bar{s}},\) obtained intersecting \(\varOmega _{\bar{s}}\) with the affine space \(\alpha =\alpha _0,\) is by definition of the form \(P_{\alpha _0}\times \{ \alpha _0\},\) where \(P_{\alpha _0}\) is a convex polytope that depends continuously on \(\alpha _0.\) We recall that a convex polytope in \({\mathbb {R}}^{n}\) is the intersection of a finite number of half-spaces (it can be thought of as the higher-dimensional analogous of a polygon in \({\mathbb {R}}^2).\)

Then, fixed two points \((a_1,\alpha _1), (a_2,\alpha _2)\in \varOmega _{\bar{s}},\) if we take the segment \(\alpha (t)=t\alpha _1+(1-t)\alpha _2,\quad t\in [0,1],\) we can define a continuous function \(t\rightarrow a(t)\in P_{\alpha (t)},\quad t\in [0,1]\) such that \(a(0)=a_1, \,\,a(1)=a_2\) and \( (a(t),\alpha (t))\in \varOmega _{\bar{s}}.\) \(\square \)

###
*Proof (Lemma 2)*

To prove that \(([\hat{a'}, \hat{a}],\hat{\alpha })\in \hat{\varOmega }_{\bar{s}}\) it suffices to show that

In fact, the remaining inequalities

follow immediately from the assumption \((a,\alpha ),(a',\alpha ')\in \varOmega _{\bar{s}}.\) To prove (19) we start by observing that the functions \(\phi \) and \(\psi \) are linear. Therefore, it suffices to check that (19) holds for \(t=0\) and \(t=1.\) Since \((\hat{a}, \hat{\alpha })\in \hat{\varOmega }_{\bar{s}},\) we get directly the inequalities

so that (19) is true for \(t=0.\) To show that

we note that this inequality is equivalent to the following

Now, by assumption we have \(\alpha _i'\ge \alpha _i,\,i=1,\ldots ,n-1,\,\) with strict inequality for at least one index \(i,\) and we conclude that

In fact, the second inequality in the chain above is equivalent to

which holds since \((\hat{a'},\hat{\alpha }')\in \hat{\varOmega }_{\bar{s}}.\) We have proven that \(\psi (1)<1.\) It remains to see that \(\phi (1)=a_{n-1}'<\psi (1).\) By assumption, \(a_i\ge a_i',\quad i=1,\ldots , n-1,\) so that

Notice that the second inequality in the chain above holds since \((\hat{a},\hat{\alpha })\in \hat{\varOmega }_{\bar{s}}.\) Then, we see that (19) hold also for \(t=1,\) and the proof that \(([\hat{a'}, \hat{a}],\hat{\alpha })\in \hat{\varOmega }_{\bar{s}}\) is concluded.

To show that \((\hat{a'},[\hat{\alpha }, \hat{\alpha }'])\in \hat{\varOmega }_{\bar{s}}\) we have to prove the following:

Since the function \(\eta (t)\) is monotone, we must check the last chain of inequalities only in \(t=0,1.\) The arguments used to this aim are similar to those given above, and we skip the details. \(\square \)

## Rights and permissions

## About this article

### Cite this article

Margheri, A., Rebelo, C. & Gomes, M.G.M. On the correlation between variance in individual susceptibilities and infection prevalence in populations.
*J. Math. Biol.* **71, **1643–1661 (2015). https://doi.org/10.1007/s00285-015-0870-7

Received:

Revised:

Published:

Issue Date:

### Keywords

- Epidemiological model
- Heterogeneous population
- Susceptibility distribution
- Variance

### Mathematics Subject Classification

- 92D25
- 92D30