From regional pulse vaccination to global disease eradication: insights from a mathematical model of poliomyelitis

Abstract

Mass-vaccination campaigns are an important strategy in the global fight against poliomyelitis and measles. The large-scale logistics required for these mass immunisation campaigns magnifies the need for research into the effectiveness and optimal deployment of pulse vaccination. In order to better understand this control strategy, we propose a mathematical model accounting for the disease dynamics in connected regions, incorporating seasonality, environmental reservoirs and independent periodic pulse vaccination schedules in each region. The effective reproduction number, \(R_e\), is defined and proved to be a global threshold for persistence of the disease. Analytical and numerical calculations show the importance of synchronising the pulse vaccinations in connected regions and the timing of the pulses with respect to the pathogen circulation seasonality. Our results indicate that it may be crucial for mass-vaccination programs, such as national immunisation days, to be synchronised across different regions. In addition, simulations show that a migration imbalance can increase \(R_e\) and alter how pulse vaccination should be optimally distributed among the patches, similar to results found with constant-rate vaccination. Furthermore, contrary to the case of constant-rate vaccination, the fraction of environmental transmission affects the value of \(R_e\) when pulse vaccination is present.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Agur Z, Cojocaru L, Mazor G, Anderson R, Danon Y (1993) Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. 90:11698–11702

    Article  Google Scholar 

  2. Alyward B, Hennessey KA, Zagario N, Olivé J-M, Cochi S (2000) When is a disease eradicable? 100 years of lessons learned. Am J Public Health 90(10):1515–1520

    Article  Google Scholar 

  3. Bacaer N, Ait Dads EH (2012) On the biological interpretation of a definition for the parameter \(R_0\) in periodic population models. J. Math. Biol. 65:601–621

    Article  MATH  MathSciNet  Google Scholar 

  4. Bacaer N, Guernaoui-Morocco S (2006) The epidemic threshold of vector-borne diseases with seasonality. The case of cutaneous leishmaniasis in Chichaoua. J. Math. Biol. 53:421–436

    Article  MATH  MathSciNet  Google Scholar 

  5. Bacaër N, Ouifki R (2007) Growth rate and basic reproduction number for population models with a simple periodic factor. Math. Biosci. 210:647–658

    Article  MATH  MathSciNet  Google Scholar 

  6. Bainov DD, Simeonov PS (1989) Systems with impulsive effect. Ellis Horwood Ltd., Chichester

    Google Scholar 

  7. Bainov DD, Simeonov PS (1993) Impulsive differential equations: periodic solutions and applications. Longman Scientific and Technical, Burnt Mill

    Google Scholar 

  8. Bainov DD, Simeonov PS (1995) Impulsive differential equations: asymptotic properties of the solutions. World Scientific, Singapore

    Google Scholar 

  9. Birmingham ME, Aylward RB, Cochi SL, Hull HF (1997) National immunization days: state of the art. J. Infect. Dis. 175:S183–188

    Article  Google Scholar 

  10. Breban R, Drake J, Stallknecht DE, Rohani P (2009) The role of environmental transmission in recurrent Avian influenza epidemics. PLoS Comput Biol 5(4):e1000346

    Article  Google Scholar 

  11. Bourouiba L, Teslya SL, Wu J (2011) Highly pathogenic Avian influenza outbreak mitigated by seasonal low pathogenic strains: insights form dynamic modeling. J. Theor. Biol. 271:181–201

    Article  MathSciNet  Google Scholar 

  12. Browne CJ, Pilyugin SS (2012) Periodic multidrug therapy in a within-host virus model. Bull. Math. Biol. 74:562–589

    Article  MATH  MathSciNet  Google Scholar 

  13. Burton J, Billings L, Cummings DAT, Schwartz IB (2012) Disease persistence in epidemiological models: the interplay between vaccination and migration. Math. Biosci. 239(1):91–96

    Article  MATH  MathSciNet  Google Scholar 

  14. Chicone CC (2006) Ordinary differential equations with applications, 2nd edn. Springer, New York

    Google Scholar 

  15. Earn DJD, Rohani P, Grenfell BT (1998) Persistence, chaos, and synchronicity in ecology and epidemiology. Proc R Soc Lond B 265:7–10

    Article  Google Scholar 

  16. Fine PEM, Carneiro IAM (1999) Transmissibility and persistence of oral polio vaccine viruses: implications for the global poliomyelitis eradication initiative. Am J Epidemiol 150(10):1001–1021

    Article  Google Scholar 

  17. Heffernan JM, Smith RJ, Wahl LM (2005) Perspectives on the basic reproductive ratio. J R Soc Interface 2(4):281–293

    Article  Google Scholar 

  18. Kealey AD, Smith? RJ (2010) Neglected tropical diseases: infection, modeling, and control. j health care poor underserved 21:53–69

  19. Kirkilionis M, Walcher S (2004) On comparison systems for ordinary differential equations. J Math Anal Appl 299:157–173

    Article  MATH  MathSciNet  Google Scholar 

  20. Li J, Blakeley D, Smith? RJ (2011) The Failure of \(R_0\). Comp Math Methods Med 2011 (Article ID 527610)

  21. Liebovitch LS, Schwartz IB (2004) Migration induced epidemics: dynamics of flux based multipatch models. Phys Lett A 332:256–267

    Article  MATH  Google Scholar 

  22. Liu J, Zhou Y (2009) Global stability of an SIRS epidemic model with transport related infection. Chaos Solitons Fractals 40(1):145–158

    Article  MATH  MathSciNet  Google Scholar 

  23. Lloyd AL, Jansen VAA (2004) Spatiotemporal dynamics of epidemics: synchrony in metapopulation models. Math Biosci 188:1–16

    Article  MATH  MathSciNet  Google Scholar 

  24. Lakshmikantham V, Bainov D, Simeonov P (1989) Theory of impulsive differential equations. World Scientific, Singapore

    Google Scholar 

  25. Losos J (1998) Report of the work group on viral diseases. In: Goodman RA, Foster KL, Trowbridge FL, Figueroa JP (eds) Global disease elimination and eradication as public health strategies. Bull World Health Organ, vol 76(suppl2), pp 94–102

  26. Meng X, Chen L, Wu B (2010) A delay SIR epidemic model with pulse vaccination and incubation times. Nonlinear analysis: real world applications 11(1):88–98

    Article  MATH  MathSciNet  Google Scholar 

  27. Morens DM, Holmes EC, Davis AS, Taunbenberger JK (2011) Global rinderpest eradication: lessons learned and why humans should celebrate too. J Infect Dis 204(4):502–505

    Article  Google Scholar 

  28. Onyango NO, Müller J (2014) Determination of optimal vaccination strategies using an orbital stability threshold from periodically driven systems. J Math Biol 68(3):763–784

  29. Smith? RJ, Cloutier P, Harrison J, Desforges A (2012) A mathematical model for the eradication of Guinea worm disease. In: Mushayabasa S, Bhunu CP (eds) Understanding the dynamics of emerging and re-emerging infectious diseases using mathematical models, pp 133–156

  30. Smith? RJ, Li J, Gordon R, Heffernan JM (2009) Can we spend our way out of the AIDS epidemic? A world halting AIDS model. BMC Public Health 9(Suppl 1):S15

  31. Shulgin B, Stone L, Agur Z (1998) Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol 60:1123–1148

    Article  MATH  Google Scholar 

  32. Terry AJ (2010) Pulse vaccination strategies in a metapopulation SIR model. Math Biosci Eng 7:457–479

    Article  MathSciNet  Google Scholar 

  33. Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton

    Google Scholar 

  34. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang W, Zhao X-Q (2008) Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Differ Equ 20:699–717

    Article  MATH  Google Scholar 

  36. World Health Organization Regional Offices for Europe and the Eastern Mediterranean (2001) Operation MECACAR: eradicating polio, final report 1995–2000. World Health Organization Regional Office for Europe, Copenhagen, Denmark

  37. World Health Organization (2008) The case for completing polio eradication. Geneva, Switzerland: World Health Organization. Available at: http://www.polioeradication.org/content/publications/thecase_final

  38. Xiao Y, Tang S, Zhou Y, Smith RJ, Wu J, Wang N (2013) Predicting an HIV/AIDS epidemic and measuring the effect of mobility in mainland China. J Theor Biol 317:271–285

    Article  MathSciNet  Google Scholar 

  39. Xiao Y, Zou X (2013) Transmission dynamics for vector-borne diseases in a patchy environment. J Math Biol 69(1):113–146

  40. Yameogo KR, Perry RT, Yameogo A et al (2005) Migration as a risk factor for measles after a mass vaccination campaign, Burkina Faso, 2002. Int J Epidemiol 34:556–564

    Article  Google Scholar 

  41. Yang YP, Xiao YN (2010) The effects of population dispersal and pulse vaccination on disease control. Math Comput Model 52:1591–1604

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York

    Google Scholar 

  43. Zipursky S, Boualam L, Cheikh DO, Fournier-Caruana J, Hamid D, Janssen M, Kartoglu U, Waeterloos G, Ronveaux O (2011) Assessing the potency of oral polio vaccine kept outside of the cold chain during a national immunization campaign in Chad. Vaccine 29(34):5652–5656

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers whose comments greatly improved the manuscript. RJS? is supported by an NSERC Discovery Grant. For citation purposes, note that the question mark in “Smith?” is part of his name.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert J. Smith.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Browne, C.J., Smith, R.J. & Bourouiba, L. From regional pulse vaccination to global disease eradication: insights from a mathematical model of poliomyelitis. J. Math. Biol. 71, 215–253 (2015). https://doi.org/10.1007/s00285-014-0810-y

Download citation

Keywords

  • Polio
  • Metapopulation modelling
  • Mass vaccination
  • Environmental transmission
  • Disease eradication

Mathematics Subject Classification

  • 62P10
  • 34A37
  • 34C25