Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations

Abstract

By introducing linear cross-diffusion for a two-component reaction-diffusion system with activator-depleted reaction kinetics (Gierer and Meinhardt, Kybernetik 12:30–39, 1972; Prigogine and Lefever, J Chem Phys 48:1695–1700, 1968; Schnakenberg, J Theor Biol 81:389–400, 1979), we derive cross-diffusion-driven instability conditions and show that they are a generalisation of the classical diffusion-driven instability conditions in the absence of cross-diffusion. Our most revealing result is that, in contrast to the classical reaction-diffusion systems without cross-diffusion, it is no longer necessary to enforce that one of the species diffuse much faster than the other. Furthermore, it is no longer necessary to have an activator–inhibitor mechanism as premises for pattern formation, activator–activator, inhibitor–inhibitor reaction kinetics as well as short-range inhibition and long-range activation all have the potential of giving rise to cross-diffusion-driven instability. To support our theoretical findings, we compute cross-diffusion induced parameter spaces and demonstrate similarities and differences to those obtained using standard reaction-diffusion theory. Finite element numerical simulations on planary square domains are presented to back-up theoretical predictions. For the numerical simulations presented, we choose parameter values from and outside the classical Turing diffusively-driven instability space; outside, these are chosen to belong to cross-diffusively-driven instability parameter spaces. Our numerical experiments validate our theoretical predictions that parameter spaces induced by cross-diffusion in both the \(u\) and \(v\) components of the reaction-diffusion system are substantially larger and different from those without cross-diffusion. Furthermore, the parameter spaces without cross-diffusion are sub-spaces of the cross-diffusion induced parameter spaces. Our results allow experimentalists to have a wider range of parameter spaces from which to select reaction kinetic parameter values that will give rise to spatial patterning in the presence of cross-diffusion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Bard J, Lauder I (1974) How well does Turing’s Theory of morphogenesis work? J Theoret Biol 45:501–531

    Article  Google Scholar 

  2. Barreira R, Elliott CM, Madzvamuse A (2011) The surface finite element method for pattern formation on evolving biological surfaces. J Math Biol 63:1095–1119

    Google Scholar 

  3. Capasso V, Liddo D (1994) Asymptotic behaviour of reaction-diffusion systems in population and epidemic models. The role of cross-diffusion. J Math Biol 32:453–463

    Article  MATH  MathSciNet  Google Scholar 

  4. Capasso V, Liddo D (1993) Global attractivity for reaction-diffusion systems. The case of nondiagonal diffusion matrices. J Math Anal Appl 177:510–529

    Article  MATH  MathSciNet  Google Scholar 

  5. Crampin EJ, Hackborn WW, Maini PK (2002) Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull Math Biol 64:746–769

    Article  Google Scholar 

  6. Dillion R, Maini PK, Othmer HG (1994) Pattern formation in generalized Turing systems. J Math Biol 32:345–393

    Article  MathSciNet  Google Scholar 

  7. Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics (Topics in Physical Chemistry). Oxford University Press, New York

    Google Scholar 

  8. Gambino G, Lombardo MC, Sammartino M (2012) Turing instability and traveling fronts for nonlinear reaction-diffusion system with cross-diffusion. Math Comp Sim 82:1112–1132

    Article  MATH  MathSciNet  Google Scholar 

  9. Gambino G, Lombardo MC, Sammartino M (2013) Pattern formation driven by cross-diffusion in 2-D domain. Nonlinear Anal Real World Appl 14:1755–1779

    Article  MATH  MathSciNet  Google Scholar 

  10. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  Google Scholar 

  11. Gray P, Scott SK (1990) Chemical oscillations and instabilities. Oxford University Press, New York, Nonlinear chemical kinetics

    Google Scholar 

  12. Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58:183–217

    Article  MATH  MathSciNet  Google Scholar 

  13. Iida M, Mimura M (2006) Diffusion, cross-diffusion an competitive interaction. J Math Biol 53:617–641

    Article  MATH  MathSciNet  Google Scholar 

  14. Kovács S (2004) Turing bifurcation in a system with cross-diffusion. Nonlinear Anal 59:567–581

    Article  MATH  MathSciNet  Google Scholar 

  15. Li L, Jin Z, Sun G (2008) Spatial pattern of an epidemic model with cross-diffusion. Chin Phys Lett 25:3500

    Article  Google Scholar 

  16. Madzvamuse A, Gaffney EA, Maini PK (2010) Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J Math Biol 61(1):133–164

    Article  MATH  MathSciNet  Google Scholar 

  17. Madzvamuse A, Maini PK, Wathen AJ (2003) A moving grid finite element method applied to a model biological pattern generator. J Comp Phys 190:478–500

    Article  MATH  MathSciNet  Google Scholar 

  18. Madzvamuse A, Thomas Roger K, Maini Philip K, Wathen Andrew J (2002) A Numerical Approach to the Study of Spatial Pattern Formation in the Ligaments of Arcoid Bivalves. Bull Math Biol 64:501–530

    Article  Google Scholar 

  19. McAfree MS, Annunziata O (2013) Cross-diffusion in a colloid-polymer aqueous system. Fluid Phase Equilibr 356:46–55. Bull Math Biol 64:501–530

    Google Scholar 

  20. Murray JD (1982) Parameter space for Turing instabiity in reaction diffusion mechanisms: a comparison of models. J Theor Biol 98:143–163

    Article  Google Scholar 

  21. Murray JD (2003) Mathematical Biology II: spatial models and biomedical applications, 3rd edn. Springer, Berlin

    Google Scholar 

  22. Painter KJ, Othmer HG, Maini PK (1999) Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc Natl Acad Sci 96:5549

    Article  Google Scholar 

  23. Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems, II. J Chem Phys 48:1695–1700

    Article  Google Scholar 

  24. Rossi F, Vanag VK, Tiezzi E, Epstein IR (2010) Quaternary cross-diffusion in water-in-oil microemulsions loaded with a component of the Belousov-Zhabotinsky reaction. J Phys Chem B 114:8140–8146

    Google Scholar 

  25. Ruiz-Baier R, Tian C (2013) Mathematical analysis and numerical simulation of pattern formation under cross-diffusion. Nonlinear Anal Real World Appl 14:601–612

    Article  MATH  MathSciNet  Google Scholar 

  26. Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. J Theor Biol 81:389–400

    Article  MathSciNet  Google Scholar 

  27. Shi J, Xie Z, Little K (2011) Cross-diffusion induced instability and stability in reaction-diffusion systems. J Appl Anal Comp 1(1):95–119

    MathSciNet  Google Scholar 

  28. Thomas D (1975) Artificial enzyme membrane, transport, memory and oscillatory phenomena. In: Thomas D, Kervenez J-P (eds) Analysis and control of immobilised enzyme systems. Springer, Heidelberg, pp 115–150

    Google Scholar 

  29. Tian Lin Z, Pedersen M (2010) Instability induced by cross-diffusion in reaction-diffusion systems. Nonlinear Anal Real World Appl 11:1036–1045

    Article  MATH  MathSciNet  Google Scholar 

  30. Turing A (1952) On the chemical basis of morphogenesis. Phil Trans R Soc B 237:37–72

    Article  Google Scholar 

  31. Tyrrell HJV, Harris KR (1984) Diffusion in liquids. Butterworths, London

    Google Scholar 

  32. Vanag VK, Epstein IR (2009) Cross-diffusion and pattern formation in reaction diffusion systems. Phys Chem Chem Phys 11:897–912

    Article  Google Scholar 

  33. Vergara A, Capuano F, Paduano L, Sartorio R (2006) Lysozyme mutual diffusion in solutions crowded by poly(ethylene glycol). Macromolecules 39:4500–4506

    Article  Google Scholar 

  34. Xie Z (2012) Cross-diffusion induced Turing instability for a three species food chain model. J Math Anal Appl 388:539–547

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhabotinsky AM (1991) A history of chemical oscillations and waves. Chaos 1:379–86

    Article  Google Scholar 

  36. Zhang J-F, Li W-T, Wang Y-X (2011) Turing patterns of a strongly coupled predator-prey system with diffusion effects. Nonlinear Anal 74:847–858

    Article  MATH  MathSciNet  Google Scholar 

  37. Zemskov EP, Vanag VK, Epstein IR (2011) Amplitude equations for reaction-diffusion systems with cross-diffusion. Phys Rev E 84:036216

    Article  Google Scholar 

Download references

Acknowledgments

This work (AM) is supported by the following grants: EPSRC research grant (EP/J016780/1): Modeling, analysis and simulation of spatial patterning on evolving surfaces.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anotida Madzvamuse.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Madzvamuse, A., Ndakwo, H.S. & Barreira, R. Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. J. Math. Biol. 70, 709–743 (2015). https://doi.org/10.1007/s00285-014-0779-6

Download citation

Keywords

  • Cross-diffusion reaction systems
  • Cross-diffusion driven instability
  • Parameter space identification
  • Pattern formation
  • Planary domains
  • Finite element method

Mathematics Subject Classification

  • 35K57
  • 92Bxx
  • 37D99
  • 65M60