Skip to main content
Log in

Exact deterministic representation of Markovian \({ SIR}\) epidemics on networks with and without loops

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In a previous paper Sharkey et al. (Bull Math Biol doi:10.1007/s11538-013-9923-5, 2012) proved the exactness of closures at the level of triples for Markovian \({ SIR}\) (susceptible-infected-removed) dynamics on tree-like networks. This resulted in a deterministic representation of the epidemic dynamics on the network that can be numerically evaluated. In this paper, we extend this modelling framework to certain classes of networks exhibiting loops. We show that closures where the loops are kept intact are exact, and lead to a simplified and numerically solvable system of ODEs (ordinary-differential-equations). The findings of the paper lead us to a generalisation of closures that are based on partitioning the network around nodes that are cut-vertices (i.e. the removal of such a node leads to the network breaking down into at least two disjointed components or subnetworks). Exploiting this structural property of the network yields some natural closures, where the evolution of a particular state can typically be exactly given in terms of the corresponding or projected states on the subnetworks and the cut-vertex. A byproduct of this analysis is an alternative probabilistic proof of the exactness of the closures for tree-like networks presented in Sharkey et al. (Bull Math Biol doi:10.1007/s11538-013-9923-5, 2012). In this paper we also elaborate on how the main result can be applied to more realistic networks, for which we write down the ODEs explicitly and compare output from these to results from simulation. Furthermore, we give a general, recipe-like method of how to apply the reduction by closures technique for arbitrary networks, and give an upper bound on the maximum number of equations needed for an exact representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ball F, Sirl D, Trapman P (2010) Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math Bio Sci 224:5373

    Article  MathSciNet  Google Scholar 

  • Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, Ross JV, Vernon MC (2012) Networks and the epidemiology of infectious disease. In: Interdisciplinary perspectives on infectious diseases 284909 special issue, Network perspectives on infectious disease dynamics

  • Diestel R (2005) Graph theory. Springer, Heidelberg

    MATH  Google Scholar 

  • Gleeson JP (2009) Bond percolation on a class of clustered random networks. Phys Rev E 80:036107

    Article  Google Scholar 

  • Green DM, Kiss IZ (2010) Large-scale properties of clustered networks: implications for disease dynamics. J Biol Dyn 4:431–445

    Article  MathSciNet  Google Scholar 

  • House T, Keeling MJ (2011) Insights from unifying modern approximations to infections on networks. J Roy Soc Interface 8:67–73

    Google Scholar 

  • Karrer B, Newman MEJ (2010) Message passing approach for general epidemic models. Phys Rev E 82:016101

    Article  MathSciNet  Google Scholar 

  • Kiss IZ, Green DM (2008) Comment on properties of highly clustered networks. Phys Rev E 78:048101

    Article  Google Scholar 

  • Miller JC (2009) Percolation and epidemics in random clustered networks. Phys Rev E 80:020901

    Article  MathSciNet  Google Scholar 

  • Newman MEJ (2003) Properties of highly clustered networks. Phys Rev E 68:026121

    Article  Google Scholar 

  • Newman MEJ (2009) Random graphs with clustering. Phys Rev Lett 1(03):058701

    Article  Google Scholar 

  • Sharkey KJ (2008) Deterministic epidemiological models at the individual level. J Math Biol 57:311–331

    Article  MATH  MathSciNet  Google Scholar 

  • Sharkey KJ (2011) Deterministic epidemic models on contact networks: correlations and unbiological terms. Theor Popul Biol 79:115–129

    Article  Google Scholar 

  • Sharkey KJ, Kiss IZ, Wilkinson RR, Simon PL (2012) Exact equations for SIR epidemics on tree graphs. Bull Math Biol. doi:10.1007/s11538-013-9923-5

  • Sedgewick R (2002) Algorithms in C: graph algorithms. Addison-Wesley, San Jose

    Google Scholar 

  • Simon PL, Taylor M, Kiss IZ (2011) Exact epidemic models on graphs using graph-automorphism driven lumping. J Math Biol 62:479–508

    Article  MATH  MathSciNet  Google Scholar 

  • Trapman P (2007) On analytical approaches to epidemics on networks. Theor Popul Biol 71:160–173

    Article  MATH  Google Scholar 

  • Taylor TJ, Kiss IZ (2013) Interdependency and hierarchy of exact and approximate epidemic models on networks. J Math Biol. doi:10.1007/s00285-013-0699-x

  • Volz EM (2004) Random networks with tunable degree distribution and clustering. Phys Rev E 70:056115

    Article  Google Scholar 

  • Volz EM, Miller JC, Galvani A, Meyers LA (2011) Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comput Biol 7:e1002042

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Péter L. Simon acknowledges support from OTKA (Grant No. 81403). Robert R. Wilkinson acknowledges support from EPSRC (DTA studentship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Z. Kiss.

Appendices

Appendix A: the closed triangle network

The triangle network is a loop of three nodes numbered 1, 2 and 3, see Fig. 1b. The system dynamics are given by the following set of equations:

$$\begin{aligned} \dot{\langle I_1 \rangle }&= \tau \langle S_1I_2 \rangle + \tau \langle S_1I_3 \rangle - \gamma \langle I_1\rangle , \end{aligned}$$
(11)
$$\begin{aligned} \dot{\langle S_1 \rangle }&= -\tau \langle S_1I_2 \rangle - \tau \langle S_1I_3 \rangle ,\end{aligned}$$
(12)
$$\begin{aligned} \dot{\langle I_2 \rangle }&= \tau \langle I_1S_2 \rangle + \tau \langle S_2I_3\rangle - \gamma \langle I_2\rangle ,\end{aligned}$$
(13)
$$\begin{aligned} \dot{\langle S_2 \rangle }&= -\tau \langle I_1S_2 \rangle - \tau \langle S_2I_3\rangle , \end{aligned}$$
(14)
$$\begin{aligned} \dot{\langle I_3 \rangle }&= \tau \langle I_2S_3 \rangle + \tau \langle I_1S_3 \rangle - \gamma \langle I_3 \rangle ,\end{aligned}$$
(15)
$$\begin{aligned} \dot{\langle S_3 \rangle }&= -\tau \langle I_2S_3 \rangle - \tau \langle I_1S_3\rangle ,\end{aligned}$$
(16)
$$\begin{aligned} \dot{\langle I_1S_2 \rangle }&= -(\tau + \gamma ) \langle I_1S_2 \rangle - \tau \langle I_1S_2I_3 \rangle + \tau \langle S_1S_2I_3 \rangle ,\end{aligned}$$
(17)
$$\begin{aligned} \dot{\langle S_1I_2 \rangle }&= -(\tau + \gamma ) \langle S_1I_2 \rangle + \tau \langle S_1S_2I_3 \rangle - \tau \langle S_1I_2I_3 \rangle ,\end{aligned}$$
(18)
$$\begin{aligned} \dot{\langle I_2S_3 \rangle }&= -(\tau + \gamma ) \langle I_2S_3 \rangle + \tau \langle I_1S_2S_3 \rangle - \tau \langle I_1I_2S_3 \rangle ,\end{aligned}$$
(19)
$$\begin{aligned} \dot{\langle S_2I_3 \rangle }&= -(\tau + \gamma ) \langle S_2I_3 \rangle - \tau \langle I_1S_2I_3 \rangle + \tau \langle I_1S_2S_3 \rangle ,\end{aligned}$$
(20)
$$\begin{aligned} \dot{\langle I_1S_3 \rangle }&= -(\tau + \gamma ) \langle I_1S_3 \rangle - \tau \langle I_1I_2S_3 \rangle + \tau \langle S_1I_2S_3 \rangle ,\end{aligned}$$
(21)
$$\begin{aligned} \dot{\langle S_1I_3 \rangle }&= -(\tau + \gamma ) \langle S_1I_3 \rangle - \tau \langle S_1I_2I_3 \rangle + \tau \langle S_1I_2S_3 \rangle , \end{aligned}$$
(22)
$$\begin{aligned} \dot{\langle I_1S_2I_3 \rangle }&= -2(\tau + \gamma ) \langle I_1S_2I_3 \rangle + \tau \langle I_1S_2S_3 \rangle + \tau \langle S_1S_2I_3 \rangle ,\end{aligned}$$
(23)
$$\begin{aligned} \dot{\langle S_1I_2I_3 \rangle }&= -2(\tau + \gamma ) \langle S_1I_2I_3 \rangle + \tau \langle S_1S_2I_3 \rangle + \tau \langle S_1I_2S_3 \rangle , \end{aligned}$$
(24)
$$\begin{aligned} \dot{\langle I_1I_2S_3 \rangle }&= -2(\tau + \gamma ) \langle I_1I_2S_3 \rangle + \tau \langle I_1S_2S_3 \rangle + \tau \langle S_1I_2S_3 \rangle ,\end{aligned}$$
(25)
$$\begin{aligned} \dot{\langle S_1I_2S_3 \rangle }&= -(2\tau + \gamma )\langle S_1I_2S_3 \rangle , \end{aligned}$$
(26)
$$\begin{aligned} \dot{\langle S_1S_2I_3 \rangle }&= -(2\tau + \gamma ) \langle S_1S_2I_3 \rangle ,\end{aligned}$$
(27)
$$\begin{aligned} \dot{\langle I_1S_2S_3 \rangle }&= -(2\tau + \gamma ) \langle I_1S_2S_3 \rangle . \end{aligned}$$
(28)

Since this network has no cut-vertices, closures are not possible for any of the subsystems above. For instance,

$$\begin{aligned} \langle S_1S_2I_3\rangle = \frac{\langle I_1S_2 \rangle \langle S_2 I_3 \rangle }{\langle S_2 \rangle }, \quad \langle I_1S_2I_3 \rangle = \frac{\langle I_1S_2 \rangle \langle S_2 I_3 \rangle }{\langle S_2 \rangle }, \end{aligned}$$

are closures that do not hold, see Fig. 2. We note that the evaluation of one of the closures above (the first) requires an extra equation for \(\langle S_1S_2\rangle \). This is given by,

$$\begin{aligned} \langle \dot{S_1S_2\rangle } = -2\tau \langle S_1S_2I_3\rangle . \end{aligned}$$

Depending on the closures that we wish to test, additional equations may be needed.

Appendix B: equations for the lollipop network

The lollipop network we consider has nodes numbered as shown in Fig. 1c. The equations describing the \({ SIR}\) model can be formulated as follows:

$$\begin{aligned} \dot{\langle I_1 \rangle }&= \tau \langle S_1I_2 \rangle + \tau \langle S_1I_3 \rangle + \tau \langle S_1I_4 \rangle - \gamma \langle I_1 \rangle , \end{aligned}$$
(29)
$$\begin{aligned} \dot{ \langle S_1 \rangle }&= -\tau \langle S_1I_2 \rangle - \tau \langle S_1I_3 \rangle - \tau \langle S_1I_4 \rangle ,\end{aligned}$$
(30)
$$\begin{aligned} \dot{\langle I_2 \rangle }&= \tau \langle I_1S_2 \rangle - \gamma \langle I_2 \rangle ,\end{aligned}$$
(31)
$$\begin{aligned} \dot{ \langle S_2 \rangle }&= -\tau \langle I_1S_2 \rangle , \end{aligned}$$
(32)
$$\begin{aligned} \dot{\langle I_3 \rangle }&= \tau \langle I_1S_3 \rangle + \tau \langle S_3I_4 \rangle - \gamma \langle I_3 \rangle ,\end{aligned}$$
(33)
$$\begin{aligned} \dot{\langle S_3 \rangle }&= -\tau \langle I_1S_3 \rangle - \tau \langle S_3I_4 \rangle ,\end{aligned}$$
(34)
$$\begin{aligned} \dot{\langle I_4 \rangle }&= \tau \langle I_1S_4 \rangle + \tau \langle I_3S_4 \rangle - \gamma \langle I_4 \rangle , \end{aligned}$$
(35)
$$\begin{aligned} \dot{\langle S_4 \rangle }&= -\tau \langle I_1S_4 \rangle - \tau \langle I_3S_4 \rangle , \end{aligned}$$
(36)
$$\begin{aligned} \dot{\langle I_1S_2 \rangle }&= -(\tau + \gamma ) \langle I_1S_2 \rangle + \tau \langle S_1S_2I_3 \rangle + \tau \langle S_1S_2I_4 \rangle ,\end{aligned}$$
(37)
$$\begin{aligned} \dot{\langle S_1I_2 \rangle }&= -(\tau + \gamma ) \langle S_1I_2 \rangle - \tau \langle S_1I_2I_3 \rangle - \tau \langle S_1I_2I_4 \rangle ,\end{aligned}$$
(38)
$$\begin{aligned} \dot{\langle I_1S_3 \rangle }&= -(\tau + \gamma ) \langle I_1S_3 \rangle + \tau \langle S_1I_2S_3 \rangle + \tau \langle S_1S_3I_4 \rangle - \tau \langle I_1S_3I_4 \rangle ,\end{aligned}$$
(39)
$$\begin{aligned} \dot{\langle S_1I_3 \rangle }&= -(\tau + \gamma ) \langle S_1I_3 \rangle - \tau \langle S_1I_2I_3 \rangle - \tau \langle S_1I_3I_4 \rangle +\tau \langle S_1S_3I_4 \rangle ,\end{aligned}$$
(40)
$$\begin{aligned} \dot{\langle I_1S_4 \rangle }&= -(\tau + \gamma ) \langle I_1S_4 \rangle + \tau \langle S_1I_2S_4 \rangle + \tau \langle S_1I_3S_4 \rangle - \tau \langle I_1I_3S_4 \rangle , \end{aligned}$$
(41)
$$\begin{aligned} \dot{\langle S_1I_4 \rangle }&= -(\tau + \gamma ) \langle S_1I_4 \rangle - \tau \langle S_1I_2I_4 \rangle - \tau \langle S_1I_3I_4 \rangle + \tau \langle S_1I_3S_4 \rangle , \end{aligned}$$
(42)
$$\begin{aligned} \dot{\langle S_3I_4 \rangle }&= -(\tau + \gamma ) \langle S_3I_4 \rangle + \tau \langle I_1S_3S_4 \rangle - \tau \langle I_1S_3I_4 \rangle ,\end{aligned}$$
(43)
$$\begin{aligned} \dot{\langle I_3S_4 \rangle }&= -(\tau + \gamma ) \langle I_3S_4 \rangle + \tau \langle I_1S_3S_4 \rangle - \tau \langle I_1I_3S_4 \rangle ,\end{aligned}$$
(44)
$$\begin{aligned} \dot{\langle S_1I_3I_4 \rangle }&= -2(\tau + \gamma ) \langle S_1I_3I_4 \rangle + \tau \langle S_1S_3I_4 \rangle +\tau \langle S_1I_3S_4 \rangle - \tau \langle S_1I_2I_3I_4 \rangle ,\end{aligned}$$
(45)
$$\begin{aligned} \dot{\langle S_1S_3I_4 \rangle }&= -(2\tau + \gamma ) \langle S_1S_3I_4 \rangle - \tau \langle S_1I_2S_3I_4 \rangle , \end{aligned}$$
(46)
$$\begin{aligned} \dot{\langle S_1I_3S_4 \rangle }&= -(2\tau + \gamma ) \langle S_1I_3S_4 \rangle - \tau \langle S_1I_2I_3S_4 \rangle , \end{aligned}$$
(47)
$$\begin{aligned} \dot{\langle I_1S_3I_4 \rangle }&= -2(\tau + \gamma ) \langle I_1S_3I_4 \rangle + \tau \langle S_1S_3I_4 \rangle + \tau \langle I_1S_3S_4 \rangle + \tau \langle S_1I_2S_3I_4 \rangle ,\end{aligned}$$
(48)
$$\begin{aligned} \dot{\langle I_1I_3S_4 \rangle }&= -2(\tau + \gamma ) \langle I_1I_3S_4 \rangle + \tau \langle S_1I_3S_4 \rangle + \tau \langle I_1S_3S_4 \rangle + \tau \langle S_1I_2I_3S_4\rangle , \end{aligned}$$
(49)
$$\begin{aligned} \dot{\langle I_1S_3S_4 \rangle }&= -(2\tau + \gamma ) \langle I_1S_3S_4 \rangle + \tau \langle S_1I_2S_3S_4 \rangle . \end{aligned}$$
(50)

This first group of equations consist of variables (e.g. configurations of states and subgraphs) which cannot be closed or further reduced. Naturally, this first set requires equations at the levels of triples and quadruples or full system size. Note that triples which are part of the triangle cannot be closed. However, the second group of equations, i.e.

$$\begin{aligned} \dot{\langle S_1I_2I_4 \rangle }&= -2(\tau + \gamma ) \langle S_1I_2I_4 \rangle + \tau \langle S_1I_2I_3S_4 \rangle - \tau \langle S_1I_2I_3I_4 \rangle , \end{aligned}$$
(51)
$$\begin{aligned} \dot{\langle S_1I_2I_3 \rangle }&= -2(\tau + \gamma ) \langle S_1I_2I_3 \rangle + \tau \langle S_1I_2S_3I_4 \rangle - \tau \langle S_1I_2I_3I_4 \rangle ,\end{aligned}$$
(52)
$$\begin{aligned} \dot{\langle S_1S_2I_3 \rangle }&= -(\tau + \gamma ) \langle S_1S_2I_3 \rangle + \tau \langle S_1S_2S_3I_4 \rangle - \tau \langle S_1S_2I_3I_4 \rangle ,\end{aligned}$$
(53)
$$\begin{aligned} \dot{\langle S_1S_2I_4 \rangle }&= -(\tau + \gamma ) \langle S_1S_2I_4 \rangle + \tau \langle S_1S_2I_3S_4 \rangle - \tau \langle S_1S_2I_3I_4 \rangle ,\end{aligned}$$
(54)
$$\begin{aligned} \dot{\langle S_1I_2S_3 \rangle }&= -(\tau + \gamma ) \langle S_1I_2S_3 \rangle - 2\tau \langle S_1I_2S_3I_4 \rangle , \end{aligned}$$
(55)
$$\begin{aligned} \dot{\langle S_1I_2S_4 \rangle }&= -(\tau + \gamma ) \langle S_1S_3I_4 \rangle - 2\tau \langle S_1I_2I_3S_4 \rangle , \end{aligned}$$
(56)
$$\begin{aligned} \dot{\langle S_1I_2I_3I_4 \rangle }&= -3(\tau + \gamma ) \langle S_1I_2I_3I_4 \rangle + \tau ( \langle S_1I_2I_3S_4 \rangle + \langle S_1I_2S_3I_4 \rangle ), \end{aligned}$$
(57)
$$\begin{aligned} \dot{\langle S_1I_2I_3S_4 \rangle }&= -(3\tau + 2\gamma ) \langle S_1I_2I_3S_4 \rangle , \end{aligned}$$
(58)
$$\begin{aligned} \dot{\langle S_1I_2S_3I_4 \rangle }&= -(3\tau + 2\gamma ) \langle S_1I_2S_3I_4 \rangle , \end{aligned}$$
(59)
$$\begin{aligned} \dot{ \langle S_1S_2I_3I_4 \rangle }&= -2(\tau + \gamma ) \langle S_1S_2I_3I_4 \rangle + \tau \langle S_1S_2S_3I_4 \rangle +\tau \langle S_1S_2I_3S_4 \rangle , \end{aligned}$$
(60)
$$\begin{aligned} \dot{\langle S_1S_2I_3S_4 \rangle }&= -(2\tau + \gamma ) \langle S_1S_2I_3S_4 \rangle , \end{aligned}$$
(61)
$$\begin{aligned} \dot{\langle S_1S_2S_3I_4 \rangle }&= -(2\tau + \gamma ) \langle S_1S_2S_3I_4 \rangle , \end{aligned}$$
(62)
$$\begin{aligned} \dot{\langle S_1I_2S_3S_4) \rangle }&= -(\tau + \gamma ) \langle S_1I_2S_3S_4 \rangle , \end{aligned}$$
(63)

can be closed by using the following identities:

$$\begin{aligned} \langle S_1I_2I_4 \rangle \langle S_1 \rangle&= \langle S_1I_2 \rangle \langle S_1 I_4 \rangle ,\end{aligned}$$
(64)
$$\begin{aligned} \langle S_1I_2I_3 \rangle \langle S_1 \rangle&= \langle S_1I_2\rangle \langle S_1 I_3 \rangle ,\end{aligned}$$
(65)
$$\begin{aligned} \langle S_1S_2I_3\rangle \langle S_1 \rangle&= \langle S_1S_2\rangle \langle S_1 I_3\rangle ,\end{aligned}$$
(66)
$$\begin{aligned} \langle S_1S_2I_4\rangle \langle S_1 \rangle&= \langle S_1S_2\rangle \langle S_1 I_4\rangle ,\end{aligned}$$
(67)
$$\begin{aligned} \langle S_1I_2S_3\rangle \langle S_1 \rangle&= \langle S_1I_2\rangle \langle S_1 S_3 \rangle ,\end{aligned}$$
(68)
$$\begin{aligned} \langle S_1I_2S_4 \rangle \langle S_1 \rangle&= \langle S_1I_2\rangle \langle S_1 S_4\rangle ,\end{aligned}$$
(69)
$$\begin{aligned} \langle S_1I_2I_3I_4\rangle \langle S_1 \rangle&= \langle S_1I_2\rangle \langle S_1 I_3 I_4 \rangle ,\end{aligned}$$
(70)
$$\begin{aligned} \langle S_1I_2I_3S_4 \rangle \langle S_1 \rangle&= \langle S_1I_2\rangle \langle S_1 I_3 S_4\rangle ,\end{aligned}$$
(71)
$$\begin{aligned} \langle S_1I_2S_3I_4 \rangle \langle S_1 \rangle&= \langle S_1I_2\rangle \langle S_1 S_3 I_4\rangle ,\end{aligned}$$
(72)
$$\begin{aligned} \langle S_1S_2I_3I_4 \rangle \langle S_1 \rangle&= \langle S_1S_2\rangle \langle S_1 I_3 I_4 \rangle ,\end{aligned}$$
(73)
$$\begin{aligned} \langle S_1S_2I_3S_4 \rangle \langle S_1 \rangle&= \langle S_1S_2\rangle \langle S_1 I_3 S_4 \rangle ,\end{aligned}$$
(74)
$$\begin{aligned} \langle S_1S_2S_3I_4 \rangle \langle S_1 \rangle&= \langle S_1S_2\rangle \langle S_1 S_3 I_4 \rangle ,\end{aligned}$$
(75)
$$\begin{aligned} \langle S_1I_2S_3S_4\rangle \langle S_1 \rangle&= \langle S_1I_2\rangle \langle S_1 S_3 S_4 \rangle . \end{aligned}$$
(76)

We note that there are two distinct types of closures. Namely, closures at the level of triples that are not part of the triangle and closures at the full system size. To complete the closed system we need the following extra equations for variables that are required by the closures. These new variables together with their equations are:

$$\begin{aligned} \dot{\langle S_1 S_2 \rangle }&= -\tau \langle S_1S_2 I_3 \rangle - \tau \langle S_1S_2 I_4 \rangle ,\end{aligned}$$
(77)
$$\begin{aligned} \dot{\langle S_1 S_3 \rangle }&= -\tau \langle S_1I_2 S_3 \rangle - 2\tau \langle S_1S_3 I_4 \rangle ,\end{aligned}$$
(78)
$$\begin{aligned} \dot{\langle S_1 S_4 \rangle }&= -\tau \langle S_1I_2S_4 \rangle - 2\tau \langle S_1I_3 S_4 \rangle ,\end{aligned}$$
(79)
$$\begin{aligned} \dot{\langle S_1 S_3 S_4 \rangle }&= -\tau \langle S_1I_2 S_3 S_4 \rangle . \end{aligned}$$
(80)

Substituting the closures given in Eqs. (6476) into Eqs. (5163) together with the set of equations that cannot be closed, Eqs. (2950), and the extra variables induced by the closures, Eqs. (7780), will result in a system of 26 differential equations describing the system dynamics completely. Without closures, the system is fully specified by 35 equations. Strictly speaking, we can drop the equations for \(\langle S_i \rangle \) if we are only interested in prevalence and then the equations in the full and RS drop to 31 and 23. Note that in the full system all \(\langle S_i \rangle \)s can be dropped, while in the RS we cannot drop \(\langle S_1 \rangle \) as the closures rely on it.

Appendix C: equations for toast network

The evolution equations on the toast network labeled as in Fig. 1d are given by

$$\begin{aligned} \dot{\langle I_1 \rangle }&= \tau \langle S_1I_2 \rangle + \tau \langle S_1I_3 \rangle + \tau \langle S_1I_4 \rangle - \gamma \langle I_1 \rangle ,\end{aligned}$$
(81)
$$\begin{aligned} \dot{\langle S_1 \rangle }&= -\tau \langle S_1I_2 \rangle - \tau \langle S_1I_3 \rangle - \tau \langle S_1I_4 \rangle ,\end{aligned}$$
(82)
$$\begin{aligned} \dot{ \langle I_2 \rangle }&= \tau \langle I_1S_2 \rangle +\tau \langle S_2I_3 \rangle - \gamma \langle I_2 \rangle ,\end{aligned}$$
(83)
$$\begin{aligned} \dot{\langle S_2 \rangle }&= -\tau \langle I_1S_2 \rangle -\tau \langle S_2I_3 \rangle ,\end{aligned}$$
(84)
$$\begin{aligned} \dot{\langle I_3 \rangle }&= \tau \langle I_1S_3 \rangle + \tau \langle S_3I_4 \rangle + \tau \langle I_2S_3 \rangle - \gamma \langle I_3 \rangle ,\end{aligned}$$
(85)
$$\begin{aligned} \dot{\langle S_3 \rangle }&= -\tau \langle I_1S_3 \rangle - \tau \langle S_3I_4 \rangle - \tau \langle I_2S_3 \rangle ,\end{aligned}$$
(86)
$$\begin{aligned} \dot{\langle I_4 \rangle }&= \tau \langle I_1S_4 \rangle + \tau \langle I_3S_4 \rangle - \gamma \langle I_4 \rangle , \end{aligned}$$
(87)
$$\begin{aligned} \dot{\langle S_4 \rangle }&= -\tau \langle I_1S_4 \rangle - \tau \langle I_3S_4 \rangle , \end{aligned}$$
(88)
$$\begin{aligned} \dot{\langle I_1S_2 \rangle }&= -(\tau + \gamma ) \langle I_1S_2 \rangle + \tau \langle S_1S_2I_3 \rangle + \tau \langle S_1S_2I_4 \rangle - \tau \langle I_1S_2I_3\rangle ,\end{aligned}$$
(89)
$$\begin{aligned} \dot{\langle S_1I_2 \rangle }&= -(\tau + \gamma ) \langle S_1I_2 \rangle + \tau \langle S_1S_2I_3 \rangle - \tau \langle S_1I_2I_3 \rangle - \tau \langle S_1I_2I_4\rangle ,\end{aligned}$$
(90)
$$\begin{aligned} \dot{\langle I_1S_3 \rangle }&= -(\tau + \gamma ) \langle I_1S_3 \rangle + \tau \langle S_1I_2S_3 \rangle + \tau \langle S_1S_3I_4 \rangle - \tau \langle I_1S_3I_4 \rangle - \tau \langle I_1I_2S_3 \rangle ,\nonumber \\ \end{aligned}$$
(91)
$$\begin{aligned} \dot{\langle S_1I_3 \rangle }&= -(\tau + \gamma ) \langle S_1I_3 \rangle - \tau \langle S_1I_2I_3 \rangle - \tau \langle S_1I_3I_4 \rangle +\tau \langle S_1S_3I_4 \rangle + \tau \langle S_1I_2S_3\rangle ,\nonumber \\ \end{aligned}$$
(92)
$$\begin{aligned} \dot{\langle I_1S_4 \rangle }&= -(\tau + \gamma ) \langle I_1S_4 \rangle + \tau \langle S_1I_2S_4 \rangle + \tau \langle S_1I_3S_4 \rangle - \tau \langle I_1I_3S_4 \rangle , \end{aligned}$$
(93)
$$\begin{aligned} \dot{\langle S_1I_4 \rangle }&= -(\tau + \gamma ) \langle S_1I_4 \rangle - \tau \langle S_1I_2I_4 \rangle - \tau \langle S_1I_3I_4 \rangle + \tau \langle S_1I_3S_4 \rangle , \end{aligned}$$
(94)
$$\begin{aligned} \dot{\langle S_3I_4 \rangle }&= -(\tau + \gamma ) \langle S_3I_4 \rangle + \tau \langle I_1S_3S_4 \rangle - \tau \langle I_1S_3I_4\rangle - \tau \langle I_2S_3I_4 \rangle ,\end{aligned}$$
(95)
$$\begin{aligned} \dot{\langle I_3S_4 \rangle }&= -(\tau + \gamma ) \langle I_3S_4 \rangle + \tau \langle I_1S_3S_4\rangle - \tau \langle I_1I_3S_4 \rangle + \tau \langle I_2S_3S_4 \rangle ,\end{aligned}$$
(96)
$$\begin{aligned} \dot{\langle S_2I_3 \rangle }&= -(\tau + \gamma ) \langle S_2I_3 \rangle + \tau \langle I_1S_2S_3 \rangle - \tau \langle I_1S_2I_3 \rangle + \tau \langle S_2S_3I_4 \rangle ,\end{aligned}$$
(97)
$$\begin{aligned} \dot{\langle I_2S_3\rangle }&= -(\tau + \gamma ) \langle I_2S_3 \rangle + \tau \langle I_1S_2S_3 \rangle - \tau \langle I_1I_2S_3 \rangle - \tau \langle I_2S_3I_4\rangle ,\end{aligned}$$
(98)
$$\begin{aligned} \dot{\langle S_1I_2I_4 \rangle }&= -2(\tau + \gamma ) \langle S_1I_2I_4 \rangle + \tau \langle S_1I_2I_3S_4 \rangle - \tau \langle S_1I_2I_3I_4 \rangle + \tau \langle S_1S_2I_3I_4\rangle ,\nonumber \\ \end{aligned}$$
(99)
$$\begin{aligned} \dot{\langle S_1I_2I_3 \rangle }&= -2(\tau + \gamma ) \langle S_1I_2I_3 \rangle + \tau \langle S_1I_2S_3I_4 \rangle - \tau \langle S_1I_2I_3I_4 \rangle \nonumber \\&+\,\, \tau \langle S_1I_2S_3 \rangle + \tau \langle S_1S_2I_3 \rangle ,\end{aligned}$$
(100)
$$\begin{aligned} \dot{\langle S_1I_3I_4 \rangle }&= -2(\tau + \gamma )\langle S_1I_3I_4\rangle + \tau \langle S_1S_3I_4\rangle +\tau \langle S_1I_3S_4 \rangle \nonumber \\&-\,\, \tau \langle S_1I_2I_3I_4 \rangle + \tau \langle S_1I_2S_3I_4\rangle ,\end{aligned}$$
(101)
$$\begin{aligned} \dot{ \langle S_1S_2I_3 \rangle }&= -(2\tau + \gamma ) \langle S_1S_2I_3 \rangle + \tau \langle S_1S_2S_3I_4 \rangle - \tau \langle S_1S_2I_3I_4 \rangle ,\end{aligned}$$
(102)
$$\begin{aligned} \dot{ \langle S_1S_2I_4 \rangle }&= -(\tau + \gamma ) \langle S_1S_2I_4 \rangle + \tau \langle S_1S_2I_3S_4 \rangle - 2\tau \langle S_1S_2I_3I_4 \rangle ,\end{aligned}$$
(103)
$$\begin{aligned} \dot{ \langle S_1I_2S_3 \rangle }&= -(2\tau + \gamma ) \langle S_1I_2S_3 \rangle - 2\tau \langle S_1I_2S_3I_4 \rangle , \end{aligned}$$
(104)
$$\begin{aligned} \dot{ \langle S_1S_3I_4 \rangle }&= -(2\tau + \gamma ) \langle S_1S_3I_4 \rangle - 2\tau \langle S_1I_2S_3I_4 \rangle , \end{aligned}$$
(105)
$$\begin{aligned} \dot{ \langle I_1S_3I_4 \rangle }&= -2(\tau + \gamma ) \langle I_1S_3I_4 \rangle + \tau \langle S_1I_2S_3I_4 \rangle + \tau \langle S_1S_3I_4 \rangle \nonumber \\&+\,\, \tau \langle I_1S_3S_4 \rangle - \tau \langle I_1I_2S_3I_4 \rangle , \end{aligned}$$
(106)
$$\begin{aligned} \dot{ \langle S_1I_2S_4 \rangle }&= -(\tau + \gamma ) \langle S_1I_2S_4 \rangle - 2\tau \langle S_1I_2I_3S_4 \rangle +\tau \langle S_1S_2I_3S_4 \rangle , \end{aligned}$$
(107)
$$\begin{aligned} \dot{ \langle S_1I_3S_4 \rangle }&= -(2\tau + \gamma ) \langle S_1I_3S_4 \rangle - \tau \langle S_1I_2I_3S_4 \rangle + \tau \langle S_1I_2S_3S_4 \rangle , \end{aligned}$$
(108)
$$\begin{aligned} \dot{ \langle I_1I_3S_4 \rangle }&= -2(\tau + \gamma ) \langle I_1I_3S_4 \rangle + \tau \langle S_1I_3S_4 \rangle + \tau \langle I_1S_3S_4 \rangle \nonumber \\&+\,\, \tau \langle S_1I_2I_3S_4 \rangle + \tau \langle I_1I_2S_3S_4 \rangle ,\end{aligned}$$
(109)
$$\begin{aligned} \dot{ \langle I_1S_3S_4 \rangle }&= -(2\tau + \gamma ) \langle I_1S_3S_4 \rangle + \tau \langle S_1I_2S_3S_4 \rangle - \tau \langle I_1I_2S_3S_4 \rangle \end{aligned}$$
(110)
$$\begin{aligned} \dot{ \langle I_1S_2I_3 \rangle }&= -2(\tau + \gamma ) \langle I_1S_2I_3 \rangle + \tau \langle S_1S_2I_3I_4 \rangle + \tau \langle I_1S_2S_3I_4 \rangle \nonumber \\&+\,\,\tau \langle S_1S_2I_3\rangle +\tau \langle I_1S_2S_3 \rangle , \end{aligned}$$
(111)
$$\begin{aligned} \dot{ \langle I_1I_2S_3 \rangle }&= -2(\tau + \gamma ) \langle I_1I_2S_3 \rangle + \tau \langle S_1I_2S_3I_4 \rangle + \tau \langle I_1I_2S_3I_4 \rangle \nonumber \\&+\,\,\tau \langle S_1I_2S_3 \rangle +\tau \langle I_1S_2S_3\rangle , \end{aligned}$$
(112)
$$\begin{aligned} \dot{\langle I_2S_3I_4 \rangle }&= -2(\tau + \gamma ) \langle I_2S_3I_4 \rangle + \tau \langle I_1S_2S_3I_4 \rangle + \tau \langle I_1I_2S_3S_4 \rangle - \tau \langle I_1I_2S_3I_4 \rangle , \nonumber \\ \end{aligned}$$
(113)
$$\begin{aligned} \dot{\langle I_2S_3S_4 \rangle }&= -(\tau + \gamma ) \langle I_2S_3S_4 \rangle + \tau \langle I_1S_2S_3S_4 \rangle - 2\tau \langle I_1I_2S_3S_4 \rangle ,\end{aligned}$$
(114)
$$\begin{aligned} \dot{\langle S_2S_3I_4 \rangle }&= -(\tau + \gamma )\langle S_2S_3I_4 \rangle + \tau \langle I_1S_2S_3S_4 \rangle - 2\tau \langle I_1S_2S_3I_4 \rangle , \end{aligned}$$
(115)
$$\begin{aligned} \dot{\langle I_1S_2S_3 \rangle }&= -(2\tau + \gamma ) \langle I_1S_2S_3 \rangle + \tau \langle S_1S_2S_3I_4 \rangle - \tau \langle I_1S_2S_3I_4 \rangle , \end{aligned}$$
(116)
$$\begin{aligned} \dot{\langle S_1I_2I_3I_4 \rangle }&= -3(\tau + \gamma ) \langle S_1I_2I_3I_4 \rangle + \tau ( \langle S_1I_2I_3S_4 \rangle \nonumber \\&+\,\, 2\langle S_1I_2S_3I_4 \rangle + \langle S_1S_2I_3I_4 \rangle ), \end{aligned}$$
(117)
$$\begin{aligned} \dot{\langle S_1I_2I_3S_4 \rangle }&= -(3\tau + 2\gamma ) \langle S_1I_2I_3S_4 \rangle + \tau (\langle S_1S_2I_3S_4 \rangle +\langle S_1I_2S_3S_4 \rangle ), \end{aligned}$$
(118)
$$\begin{aligned} \dot{\langle S_1I_2S_3I_4 \rangle }&= -(4\tau + 2\gamma ) \langle S_1I_2S_3I_4 \rangle , \end{aligned}$$
(119)
$$\begin{aligned} \dot{\langle S_1S_2I_3I_4 \rangle }&= -(3\tau + 2\gamma ) \langle S_1S_2I_3I_4 \rangle + \tau \langle S_1S_2S_3I_4 \rangle +\tau \langle S_1S_2I_3S_4 \rangle , \end{aligned}$$
(120)
$$\begin{aligned} \dot{\langle S_1S_2I_3S_4 \rangle }&= -(3\tau + \gamma ) \langle S_1S_2I_3S_4 \rangle ,\end{aligned}$$
(121)
$$\begin{aligned} \dot{\langle S_1S_2S_3I_4 \rangle }&= -(2\tau + \gamma ) \langle S_1S_2S_3I_4 \rangle , \end{aligned}$$
(122)
$$\begin{aligned} \dot{\langle S_1I_2S_3S_4 \rangle }&= -(2\tau + \gamma ) \langle S_1I_2S_3S_4 \rangle , \end{aligned}$$
(123)
$$\begin{aligned} \dot{\langle I_1S_2S_3S_4 \rangle }&= -(3\tau + \gamma ) \langle I_1S_2S_3S_4 \rangle ,\end{aligned}$$
(124)
$$\begin{aligned} \dot{\langle I_1S_2S_3I_4 \rangle }&= -(3\tau + 2\gamma ) \langle I_1S_2S_3I_4 \rangle +\tau \langle I_1S_2S_3S_4 \rangle + \tau \langle S_1S_2S_3I_4 \rangle , \end{aligned}$$
(125)
$$\begin{aligned} \dot{\langle I_1I_2S_3S_4 \rangle }&= -(3\tau + 2\gamma ) \langle I_1I_2S_3S_4 \rangle +\tau \langle I_1S_2S_3S_4 \rangle + \tau \langle S_1I_2S_3S_4 \rangle , \end{aligned}$$
(126)
$$\begin{aligned} \dot{\langle I_1I_2S_3I_4 \rangle }&= -3(\tau + \gamma ) \langle I_1I_2S_3I_4 \rangle +\tau \langle I_1S_2S_3I_4 \rangle + \tau \langle I_1I_2S_3S_4 \rangle + 2\tau \langle S_1I_2S_3I_4 \rangle .\nonumber \\ \end{aligned}$$
(127)

Appendix D: equations for the star-triangle network

In this section we write down the system of differential equations that are an exact representation of the \({ SIR}\) epidemic on the star triangle-network, see Fig. 1g. To simplify the notation, nodes within triangle \(i\), i.e. \(t_i^1\) and \(t_i^2\), are now denoted by \(i_1\) and \(i_2\). The relevant equations are:

$$\begin{aligned} \dot{\langle S_1 \rangle }&= - \tau \sum _{j=1}^M\sum _{k=1}^2 \langle S_1I_{j_k} \rangle ,\end{aligned}$$
(128)
$$\begin{aligned} \dot{ \langle I_{1} \rangle }&= + \tau \sum _{j=1}^M\sum _{k=1}^2 \langle S_1I_{j_k} \rangle -\gamma \langle I_1 \rangle ,\end{aligned}$$
(129)
$$\begin{aligned} \dot{ \langle S_{i_1} \rangle }&= - \tau \langle I_1S_{i_1} \rangle - \tau \langle S_{i_1}I_{i_2} \rangle ,\end{aligned}$$
(130)
$$\begin{aligned} \dot{ \langle I_{i_1} \rangle }&= \tau \langle I_1S_{i_1} \rangle + \tau \langle S_{i_1}I_{i_2} \rangle - \gamma \langle I_{i_1} \rangle ,\end{aligned}$$
(131)
$$\begin{aligned} \dot{ \langle S_{i_2} \rangle }&= - \tau \langle I_1S_{i_2} \rangle - \tau \langle I_{i_1}S_{i_2} \rangle ,\end{aligned}$$
(132)
$$\begin{aligned} \dot{ \langle I_{i_2} \rangle }&= \tau \langle I_1S_{i_2} \rangle + \tau \langle I_{i_1}S_{i_2} \rangle - \gamma \langle I_{i_2} \rangle ,\end{aligned}$$
(133)
$$\begin{aligned} \dot{ \langle S_{i_1}I_{i_2} \rangle }&= -(\tau +\gamma ) \langle S_{i_1}I_{i_2} \rangle + \tau \langle I_1S_{i_1}S_{i_2} \rangle - \tau \langle I_1S_{i_1}I_{i_2} \rangle , \end{aligned}$$
(134)
$$\begin{aligned} \dot{ \langle I_{i_1}S_{i_2} \rangle }&= -(\tau +\gamma ) \langle I_{i_1}S_{i_2} \rangle + \tau \langle I_1S_{i_1}S_{i_2} \rangle - \tau \langle I_1I_{i_1}S_{i_2} \rangle , \end{aligned}$$
(135)
$$\begin{aligned} \dot{ \langle I_1S_{i_1} \rangle }&= -(\tau +\gamma ) \langle I_1S_{i_1} \rangle + \tau \langle S_1S_{i_1}I_{i_2} \rangle - \tau \langle I_1S_{i_1}I_{i_2} \rangle \nonumber \\&+\,\, \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1S_{i_1} \rangle \langle S_1I_{j_k} \rangle }{ \langle S_1 \rangle }, \end{aligned}$$
(136)
$$\begin{aligned} \dot{ \langle I_1S_{i_2} \rangle }&= -(\tau +\gamma ) \langle I_1S_{i_2} \rangle + \tau \langle S_1I_{i_1}S_{i_2} \rangle - \tau \langle I_1I_{i_1}S_{i_2} \rangle \nonumber \\&+\,\, \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1S_{i_2} \rangle \langle S_1I_{j_k} \rangle }{ \langle S_1 \rangle }, \end{aligned}$$
(137)
$$\begin{aligned} \dot{ \langle S_1 I_{i_1} \rangle }&= - (\tau +\gamma ) \langle S_1I_{i_1} \rangle -\tau \langle S_1 I_{i_1} I_{i_2} \rangle + \tau \langle S_1 S_{i_1} I_{i_2} \rangle \nonumber \\&-\,\, \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1 I_{i_1} \rangle \langle S_1 I_{j_k} \rangle }{ \langle S_1 \rangle },\end{aligned}$$
(138)
$$\begin{aligned} \dot{ \langle S_1 I_{i_2} \rangle }&= - (\tau +\gamma ) \langle S_1I_{i_2} \rangle - \tau \langle S_1 I_{i_1} I_{i_2} \rangle + \tau \langle S_1 I_{i_1} S_{i_2} \rangle \nonumber \\&-\,\, \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1I_{i_2} \rangle \langle S_1 I_{j_k} \rangle }{ \langle S_1 \rangle },\end{aligned}$$
(139)
$$\begin{aligned} \dot{ \langle S_1 S_{i_1} \rangle }&= - \tau \langle S_1S_{i_1}I_{i_2} \rangle - \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1S_{i_1} \rangle \langle S_1 I_{j_k} \rangle }{ \langle S_1 \rangle }, \end{aligned}$$
(140)
$$\begin{aligned} \dot{ \langle S_1 S_{i_2} \rangle }&= - \tau \langle S_1I_{i_1}S_{i_2} \rangle - \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1S_{i_2} \rangle \langle S_1 I_{j_k} \rangle }{ \langle S_1 \rangle },\end{aligned}$$
(141)
$$\begin{aligned} \dot{ \langle I_1S_{i_1}S_{i_2} \rangle }&= -(2\tau +\gamma ) \langle I_1S_{i_1}S_{i_2} \rangle + \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1S_{i_1}S_{i_2} \rangle \langle S_1I_{j_k} \rangle }{ \langle S_1 \rangle }, \end{aligned}$$
(142)
$$\begin{aligned} \dot{ \langle I_1S_{i_1}I_{i_2} \rangle }&= -2(\tau +\gamma ) \langle I_1S_{i_1}I_{i_2} \rangle + \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1S_{i_1}I_{i_2} \rangle \langle S_1I_{j_k} \rangle }{ \langle S_1 \rangle } \nonumber \\&\quad + \tau \langle I_1S_{i_1}S_{i_2} \rangle + \tau \langle S_1S_{i_1}I_{i_2} \rangle , \end{aligned}$$
(143)
$$\begin{aligned} \dot{ \langle I_1I_{i_1}S_{i_2} \rangle }&= -2(\tau +\gamma ) \langle I_1I_{i_1}S_{i_2} \rangle + \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1I_{i_1}S_{i_2} \rangle \langle S_1I_{j_k} \rangle }{ \langle S_1 \rangle } \nonumber \\&\quad + \tau \langle I_1S_{i_1}S_{i_2} \rangle + \tau \langle S_1I_{i_1}S_{i_2} \rangle , \end{aligned}$$
(144)
$$\begin{aligned} \dot{ \langle S_1 S_{i_1} I_{i_2} \rangle }&= - (2 \tau + \gamma ) \langle S_1 S_{i_1} I_{i_2} \rangle - \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1S_{i_1} I_{i_2} \rangle \langle S_1 I_{j_k} \rangle }{ \langle S_1 \rangle },\end{aligned}$$
(145)
$$\begin{aligned} \dot{ \langle S_1 I_{i_1} S_{i_2} \rangle }&= - (2 \tau + \gamma ) \langle S_1 I_{i_1} S_{i_2} \rangle - \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1I_{i_1} S_{i_2} \rangle \langle S_1 I_{j_k} \rangle }{ \langle S_1 \rangle },\end{aligned}$$
(146)
$$\begin{aligned} \dot{ \langle S_1I_{i_1}I_{i_2} \rangle }&= -2(\tau +\gamma ) \langle S_1I_{i_1}I_{i_2} \rangle + \tau \langle S_1S_{i_1}I_{i_2}\rangle +\tau \langle S_1I_{i_1}S_{i_2}\rangle \nonumber \\&- \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1I_{i_1}I_{i_2} \rangle \langle S_1I_{j_k} \rangle }{ \langle S_1 \rangle }, \end{aligned}$$
(147)
$$\begin{aligned} \dot{ \langle S_1 S_{i_1} S_{i_2} \rangle }&= - \tau \sum _{j=1, j \ne i}^M\sum _{k=1}^2\frac{ \langle S_1S_{i_1} S_{i_2} \rangle \langle S_1 I_{j_k} \rangle }{ \langle S_1 \rangle }, \end{aligned}$$
(148)

where, in Eqs. (136148) we have used the following closures:

$$\begin{aligned} \langle S_1S_{i_1}S_{i_2}I_{k_j} \rangle \langle S_1 \rangle&= \langle S_1S_{i_1}S_{i_2} \rangle \langle S_1I_{k_j} \rangle ,\\ \langle S_1S_{i_1}I_{k_j} \rangle \langle S_1 \rangle&= \langle S_1S_{i_1} \rangle \langle S_1I_{k_j}\rangle ,\\ \langle S_1S_{i_2}I_{k_j}\rangle \langle S_1 \rangle&= \langle S_1S_{i_2}\rangle \langle S_1I_{k_j}\rangle ,\\ \langle S_1S_{i_1}I_{i_2}I_{k_j} \rangle \langle S_1 \rangle&= \langle S_1S_{i_1}I_{i_2}\rangle \langle S_1I_{k_j}\rangle , \end{aligned}$$

and

$$\begin{aligned} \langle S_1I_{i_1}S_{i_2}I_{k_j} \rangle \langle S_1 \rangle = \langle S_1I_{i_1}S_{i_2}\rangle \langle S_1I_{k_j}\rangle , \end{aligned}$$

for \(i, k=1, 2, \ldots , M\), \(i \ne k\), and \(j=1, 2\).

These closures are of two main type, namely:

  1. 1.

    Closure of a triple which is not a triangle \((i\ne j)\):

    $$\begin{aligned} \langle X_{i_l}S_1Y_{j_k} \rangle \langle S_1 \rangle =\langle X_{i_l}S_1 \rangle \langle S_1Y_{j_k}\rangle , \end{aligned}$$
    (149)

    where \(l,k=1,2\), \(i,j=1,\ldots ,M\) and \(X, Y\) are either \(S\) or \(I\) in some particular combination.

  2. 2.

    Closure of a quadruple containing a triangle:

    $$\begin{aligned} \langle X_{i_1}Y_{i_2}S_1Z_{j_k} \rangle \langle S_1 \rangle =\langle X_{i_1}Y_{i_2}S_1\rangle \langle S_1Z_{j_k}\rangle , \end{aligned}$$
    (150)

    where \(k=1,2\), \(i,j=1,\ldots ,M\) and \(X, Y, Z\) are either \(S\) or \(I\) in some particular combination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, I.Z., Morris, C.G., Sélley, F. et al. Exact deterministic representation of Markovian \({ SIR}\) epidemics on networks with and without loops. J. Math. Biol. 70, 437–464 (2015). https://doi.org/10.1007/s00285-014-0772-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-014-0772-0

Keywords

Mathematics Subject Classification

Navigation