Advertisement

Journal of Mathematical Biology

, Volume 68, Issue 1–2, pp 41–55 | Cite as

Parameter non-identifiability of the Gyllenberg–Webb ODE model

  • Niklas Hartung
Article

Abstract

An ODE model introduced by Gyllenberg and Webb (Growth Develop Aging 53:25–33, 1989) describes tumour growth in terms of the dynamics between proliferating and quiescent cell states. The passage from one state to another and vice versa is modelled by two functions \(r_o\) and \(r_i\) depending on the total tumour size. As these functions do not represent any observable quantities, they have to be identified from the observations. In this paper we show that there is an infinite number of pairs (\(r_o, r_i\)) corresponding to the same solution of the ODE system and the functions (\(r_o, r_i\)) will be classified in terms of this equivalence. Surprisingly, the technique used for this classification permits a uniqueness proof of the solution of the ODE model in a non-Lipschitz case. The reasoning can be widened to a more general setting including an extension of the Gyllenberg–Webb model with a nonlinear birth rate. The relevance of this result is discussed in a preclinical application scenario.

Keywords

Tumour Growth Quiescence Parameter identifiability 

Mathematics Subject Classification (2000)

92C50 34A12 34A55 

Notes

Acknowledgments

The author would like to thank Dr. T. Pourcher for providing the SPECT images and for his helpful comments on the usage of SPECT imaging in his laboratory. In addition to that, the remarks and propositions of Florence Hubert and Guillemette Chapuisat were of great value. Finally, the referees’ feedback permitted to improve the quality and readability of this manuscript substantially. The author was partially supported by the Agence Nationale de la Recherche under grant ANR-09-BLAN-0217-01 and by the Cancéropôle PACA.

References

  1. Alarcon T, Jensen HJ (2011) Quiescence: a mechanism for escaping the effects of drug on cell populations. J R Soc Interface 8:99–106CrossRefGoogle Scholar
  2. Amann H, Escher J (2006) Analysis II. Grundstudium Mathematik, BirkhäuserGoogle Scholar
  3. Araujo RP, McElwain DL (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66:1039–1091CrossRefMathSciNetGoogle Scholar
  4. Brown D, Gatter K (2002) Ki67 protein: the immaculate deception? Histopathology 40:2–11CrossRefGoogle Scholar
  5. Coller HA (2011) The Eessence of quiescence. Science 334:1074CrossRefGoogle Scholar
  6. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4(3):e83CrossRefGoogle Scholar
  7. Colozza M, Azambuja E, Cardoso F, Sotiriou C, Larsimont D, Piccart M (2005) Proliferative markers as prognostic and predictive tools in early breast cancer: where are we now? Ann Oncol 16:1723–1739CrossRefGoogle Scholar
  8. D’Onofrio A, Fasano A, Monechi B (2011) A generalisation of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth. Math Biosci 230:45–54CrossRefzbMATHMathSciNetGoogle Scholar
  9. Feller W (1939) On the logistic law of growth and its empirical verifications in biology. Acta Biotheoret 5:51–65CrossRefGoogle Scholar
  10. Franken PR, Guglielmi J, Vanhove C, Koulibaly M, Defrise M, Darcourt J, Pourcher T (2010) Distribution and dynamics of (99m)Tc-pertechnetate uptake in the thyroid and other organs assessed by single-photon emission computed tomography in living mice. Thyroid 20:519–526CrossRefGoogle Scholar
  11. Gardner L, Li Q, Park M, Flanagan W, Semenza G, Dang C (2001) Hypoxia inhibits G1/S transition throughregulation of p27 expression. J Biol Chem 276(11):7919–7926CrossRefGoogle Scholar
  12. Gyllenberg M, Webb G (1989) Quiescence as an explanation of Gompertzian tumor growth. Growth Develop Aging 53:25–33Google Scholar
  13. Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling: a dynamical theory of tumor growth, response and postvascular dormancy. Cancer Res 59:4770–4775Google Scholar
  14. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  15. Hart D, Shochat E, Agur Z (1998) The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer 78:382–387CrossRefGoogle Scholar
  16. Hartung N (2011) Une étude de l’applicabilité du modèle de Gyllenberg et Webb. http://www.cmi.univ-mrs.fr/~hartung/memoire_master2_niklas_hartung.pdf
  17. Hittelman WN, Liao Y, Wang L, Milas L (2010) Are cancer stem cells radioresistant? Future Oncol 6:1563–1576CrossRefGoogle Scholar
  18. Iwata K, Kawasaki K, Shigesada N (2000) A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol 203:177–186CrossRefGoogle Scholar
  19. Kozusko F, Bajzer Z (2003) Combining Gompertzian growth and cell population dynamics. Math Biosci 185:153–167CrossRefzbMATHMathSciNetGoogle Scholar
  20. Kyle AH, Baker JH, Minchinton AI (2012) Targeting quiescent tumor cells via oxygen and IGF-I supplementation. Cancer Res 72:801–809CrossRefGoogle Scholar
  21. Laird AK (1964) Dynamics of tumor growth. Br J Cancer 18:490–502CrossRefGoogle Scholar
  22. Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV, Zhang T, Furuya T, Jin M, Zhu Z, Wang H, Yu J, Li Y, Hao Y, Choi A, Ke H, Ma D, Yuan J (2011) Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147:223–234CrossRefGoogle Scholar
  23. Mellor HR, Ferguson DJ, Callaghan R (2005) A model of quiescent tumour microregions for evaluating multicellular resistance to chemotherapeutic drugs. Br J Cancer 93:302–309CrossRefGoogle Scholar
  24. Redmond KM, Wilson TR, Johnston PG, Longley DB (2008) Resistance mechanisms to cancer chemotherapy. Front Biosci 13:5138–5154CrossRefGoogle Scholar
  25. Ribba B, Watkin E, Tod M, Girard P, Grenier E, You B, Giraudo E, Freyer G (2011) A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers. Eur J Cancer 47(3):479–490CrossRefGoogle Scholar
  26. Richard Fiardo P, Franken P, Lamit A, Marsault R, Guglielmi J, Cambien B, Graslin F, Lindenthal S, Darcourt J, Pourcher T, Vassaux G (2012) Normalisation to blood activity is a requirement for the accurate quantification of Na/I symporter ectopic expression by SPECT/CT. PLoS One, accepted.Google Scholar
  27. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M, Poggesi I, Rocchetti M (2004) Predictive pharmacokinetic–pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64:1094–1101CrossRefGoogle Scholar
  28. Smallbone K, Gatenby RA, Maini PK (2008) Mathematical modelling of tumour acidity. J Theor Biol 255:106–112CrossRefMathSciNetGoogle Scholar
  29. Spinelli L, Torricelli A, Ubezio P, Basse B (2006) Modelling the balance between quiescence and cell death in normal and tumour cell populations. Math Biosci 202:349–370CrossRefzbMATHMathSciNetGoogle Scholar
  30. Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454CrossRefGoogle Scholar
  31. Ubezio P, Cameron D (2008) Cell killing and resistance in pre-operative breast cancer chemotherapy. BMC Cancer 8:201CrossRefGoogle Scholar
  32. Wallbaum S, Grau N, Schmid A, Frick K, Neeb A, Sleeman JP (2009) Cell cycle quiescence can suppress transcription from an ecdysone receptor-based inducible promoter in mammalian cells. BioTechniques 46:433–440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Aix-Marseille UniversitéMarseille cedex 13France

Personalised recommendations