Journal of Mathematical Biology

, Volume 66, Issue 4–5, pp 743–766 | Cite as

The influence of a line with fast diffusion on Fisher-KPP propagation

  • Henri Berestycki
  • Jean-Michel Roquejoffre
  • Luca Rossi
Article

Abstract

We propose here a new model to describe biological invasions in the plane when a strong diffusion takes place on a line. We establish the main properties of the system, and also derive the asymptotic speed of spreading in the direction of the line. For low diffusion, the line has no effect, whereas, past a threshold, the line enhances global diffusion in the plane and the propagation is directed by diffusion on the line. It is shown here that the global asymptotic speed of spreading in the plane, in the direction of the line, grows as the square root of the diffusion on the line. The model is much relevant to account for the effects of fast diffusion lines such as roads on spreading of invasive species.

Keywords

KPP equations Reaction-diffusion system Fast diffusion on a line  Asymptotic speed of propagation 

Mathematics Subject Classification

35K57 92D25 35B40 35K40 35B53 

References

  1. Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusion arising in population genetics. Adv Math 30:33–76MathSciNetMATHCrossRefGoogle Scholar
  2. Barles G, Evans LC, Souganidis PE (1990) Wavefront propagation for reaction-diffusion systems of PDE. Duke Math J 61:835–858MathSciNetMATHCrossRefGoogle Scholar
  3. Barroux R (2012) Redouté, le moustique “tigre” est arrivé aux portes de Paris, le Monde, July 18Google Scholar
  4. Berestycki H, Hamel F (2012) Generalized transition waves and their properties. Comm Pure Appl Math 65:592–648MathSciNetMATHCrossRefGoogle Scholar
  5. Berestycki H, Hamel F (2012) Reaction-diffusion equations and propagation phenomena. In: Applied mathematical sciences. Springer, Berlin, to appearGoogle Scholar
  6. Berestycki H, Hamel F, Roques L (2005) Analysis of the periodically fragmented environment model I. Species persistence. J Math Biol 51:75–113MathSciNetMATHCrossRefGoogle Scholar
  7. Evans LC, Souganidis PE (1989) A PDE approach to certain large deviations problem for systems of parabolic equations. Ann Inst H Poincaré Anal Non Linéaire 6(suppl.):229–258Google Scholar
  8. Hillen T (2012) Conference given at the Banff research station. http://temple.birs.ca/11w5106/
  9. Hillen T, Painter KJ (2012) Transport and anisotropic diffusion models for movement in oriented habitats, preprintGoogle Scholar
  10. Hirsch MV (1988) Stability and convergence in strongly monotone dynamical systems. J Reine Angew Math 383:1–53MathSciNetMATHGoogle Scholar
  11. Jung T, Blaschke M (2004) Phytophthora root and collar rot of alders in Bavaria: distribution, modes of spread and possible management strategies. Plant Pathol 53:197–208CrossRefGoogle Scholar
  12. Kolmogorov AN, Petrovskii IG, Piskunov NS (1937) Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull Univ État Moscou Sér Intern A 1:1–26Google Scholar
  13. Ladyzhenskaya OA, Ural’tseva NN, Solonnikov VA (1968) Linear and quasilinear parabolic equations of parabolic type. American Math Soc, ProvidenceGoogle Scholar
  14. McKenzie HW, Merrill EH, Spiteri RJ, Lewis MA (2012) How linear features alter predator movement and the functional response. Interface focus, to appear http://rsfs.royalsocietypublishing.org/content/2/2/205.full
  15. Siegfried A (1960) Itinéraires des contagions, épidémies et idéologies. A. Colin, Paris, 164Google Scholar
  16. Weinberger HF (2002) On spreading speeds and traveling waves for growth and migration in periodic habitat. J Math Biol 45:511–548MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Henri Berestycki
    • 1
  • Jean-Michel Roquejoffre
    • 2
  • Luca Rossi
    • 3
  1. 1.Ecole des Hautes Etudes en Sciences Sociales, CAMSParisFrance
  2. 2.Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouse Cedex 4France
  3. 3.Dipartimento di MatematicaUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations