Skip to main content
Log in

Analysis of unstable behavior in a mathematical model for erythropoiesis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider an age-structured model that describes the regulation of erythropoiesis through the negative feedback loop between erythropoietin and hemoglobin. This model is reduced to a system of two ordinary differential equations with two constant delays for which we show existence of a unique steady state. We determine all instances at which this steady state loses stability via a Hopf bifurcation through a theoretical bifurcation analysis establishing analytical expressions for the scenarios in which they arise. We show examples of supercritical Hopf bifurcations for parameter values estimated according to physiological values for humans found in the literature and present numerical simulations in agreement with the theoretical analysis. We provide a strategy for parameter estimation to match empirical measurements and predict dynamics in experimental settings, and compare existing data on hemoglobin oscillation in rabbits with predictions of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adimy M, Crauste F (2009) Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations. Math Comp Mod 49(11–12): 2128–2137

    Article  MathSciNet  MATH  Google Scholar 

  • Adimy M, Crauste F, Hbid ML, Qesmi R (2010) Stability and Hopf bifurcation for a cell population model with state-dependent delay. SIAM J Appl Math 70(5): 1611–1633

    Article  MathSciNet  MATH  Google Scholar 

  • Adimy M, Crauste F, Marquet C (2010) Asymptotic behavior and stability switch for a mature-immature model of cell differentiation. NonLinear Anal Real World Appl 11(4): 2913–2929

    Article  MathSciNet  MATH  Google Scholar 

  • Bélair J, Campbell SA (1994) Stability and bifurcations of equilibria in a multiple-delayed differential equation. SIAM J Appl Math 54(5): 1402–1424

    Article  MathSciNet  MATH  Google Scholar 

  • Bélair J, Mackey MC, Mahaffy JM (1995) Age-structured and two-delay models for erythropoiesis. Math Biosci 128(1–2): 317–346

    Article  MATH  Google Scholar 

  • Bernard S, Bélair J, Mackey MC (2003) Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J Theor Biol 223: 283–298

    Article  Google Scholar 

  • Burwell EL, Brickley BA, Finch CA (1953) Erythrocyte life span in small animals; comparison of two methods employing radioiron. Am J Physiol 172: 718–725

    Google Scholar 

  • Cornish-Bowden A (2004) Fundamentals of enzyme kinetics. Portland Press, London

    Google Scholar 

  • Diekmann O, van Gils SA, Verduyn Lunel SM, Walther H-O (1995) Delay equations. functional-, complex-, and nonlinear analysis. Applied mathematical sciences, vol 110. Springer, New York

    Google Scholar 

  • Erslev AJ (1990) Erythrokinetics. In: Hematology. McGraw-Hill, New York, pp 414–442

  • Erslev AJ (1991) Erythropoietin titers in health and disease. Semin Hematol 28(Suppl. 3): 2–8

    Google Scholar 

  • Fishbane S, Berns JS (2007) Evidence and implications of haemoglobin cycling in anaemia management. Nephrol Dial Transplant 22: 2129–2132

    Article  Google Scholar 

  • Foley C, Mackey MC (2009) Dynamic hematological disease: a review. J Math Biol 58(1): 285–322

    Article  MathSciNet  MATH  Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Graber S, Krantz S (1978) Erythropoietin and the control of red cell production. Ann Rev Med 29: 51–66

    Article  Google Scholar 

  • Grodins FS, Gray JS, Schroeder KR, Norins AL, Jones RW (1954) Respiratory responses to CO2 inhalation: a theoretical study of a nonlinear biological regulator. J Appl Physiol 7(3): 283–308

    Google Scholar 

  • Guevara MR, Glass L (1982) Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J Math Biol 14(1): 1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK, Verduyn Lunel SM (1993) Introduction to functional differential equations. Applied mathematical sciences, vol 99. Springer, New York

    Google Scholar 

  • Hewitt CD, Innes DJ, Savory J, Wills MR (1989) normal biochemical and hematological values in New Zealand white rabbits. Clin Chem 35(8): 1777–1779

    Google Scholar 

  • Kuznetsov YA (2004) Elements of applied bifurcation theory. Springer, New York

    MATH  Google Scholar 

  • Mackey MC (1978) Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51(5): 941–956

    Google Scholar 

  • Mackey MC (1979) Periodic auto-immune hemolytic anemia: an induced dynamical disease. Bull Math Biol 41(6): 829–834

    MathSciNet  MATH  Google Scholar 

  • Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300): 287–289

    Article  Google Scholar 

  • Mackey MC, Glass L (1989) Complex dynamics and bifurcations in neurology. J Theor Biol 138: 129–147

    Article  MathSciNet  Google Scholar 

  • Mahaffy JM, Bélair J, Mackey MC (1998) Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. J Theor Biol 190(2): 135–146

    Article  Google Scholar 

  • Miller CB, Jones RJ, Piantadosi S, Abeloff MD, Spivak JL (1990) Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med 332(24): 1689–1692

    Article  Google Scholar 

  • Milton JG, Mackey MC (1989) Periodic haematological diseases: mystical entities or dynamical disorders?. J R Coll Phys. Lond. 23(4): 236–241

    Google Scholar 

  • Orr JS, Kirk J, Gray KG, Anderson JR (1968) A study of the interdependence of red cell and bone marrow stem cell populations. Br J Haematol 15(1): 23–34

    Article  Google Scholar 

  • Pujo-Menjouet L, Mackey MC (2004) Contribution to the study of periodic chronic myelogenous leukemia. C R Biologies 327: 235–244

    Article  Google Scholar 

  • Reimann HA (1951) Periodic disease. Medicine 30(3): 219–245

    Article  MathSciNet  Google Scholar 

  • Strogatz SH (2000) Nonlinear dynamics and chaos. Westview, Boulder

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Serna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serna, S., Nirody, J.A. & Rácz, M.Z. Analysis of unstable behavior in a mathematical model for erythropoiesis. J. Math. Biol. 66, 595–625 (2013). https://doi.org/10.1007/s00285-012-0524-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0524-y

Keywords

Mathematics Subject Classification

Navigation