Skip to main content
Log in

Global dynamics of a reaction and diffusion model for Lyme disease

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper is devoted to the mathematical analysis of a reaction and diffusion model for Lyme disease. In the case of a bounded spatial habitat, we obtain the global stability of either disease-free or endemic steady state in terms of the basic reproduction number R 0. In the case of an unbounded spatial habitat, we establish the existence of the spreading speed of the disease and its coincidence with the minimal wave speed for traveling fronts. Our analytic results show that R 0 is a threshold value for the global dynamics and that the spreading speed is linearly determinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbour AG, Fish D (1993) The biological and social phenomenon of Lyme disease. Science 260: 1610–1616

    Article  Google Scholar 

  • Caraco T, Gardner G, Maniatty W, Deelman E, Szymanski BK (1998) Lyme disease: self-regulation and pathogen invasion. J Theor Biol 193: 561–575

    Article  Google Scholar 

  • Caraco T, Glavanakov S, Chen G, Flaherty JE, Ohsumi TK, Szymanski BK (2002) Stage-structured infection transmission and a spatial epidemic: A model for Lyme disease. Am Nat 160: 348–359

    Article  Google Scholar 

  • Fang J, Wei J, Zhao X-Q (2008) Spatial dynamics of a nonlocal and time-delayed reaction–diffusion system. J Differ Equ 245: 2749–2770

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK (1988) Asymptotic behavior of dissipative systems. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Hsu S-B, Zhao X-Q (2008) Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J Math Anal 40: 776–789

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Weinberger HF, Lewis MA (2005) Spreading speeds as slowest wave speeds for cooperative systems. Math Biosci 196: 82–98

    Article  MathSciNet  MATH  Google Scholar 

  • Liang X, Zhao X-Q (2007) Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun Pure Appl Math 60: 1–40

    Article  MathSciNet  MATH  Google Scholar 

  • Liang X, Yi Y, Zhao X-Q (2006) Spreading speeds and traveling waves for periodic evolution systems. J Differ Equ 231: 57–77

    Article  MathSciNet  MATH  Google Scholar 

  • Lou Y, Zhao X-Q (2011) Modelling malaria control by introduction of larvivorous fish. Bull Math Biol. doi:10.1007/s11538-011-9628-6

  • Lui R (1989) Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Math Biosci 93: 269–295

    Article  MathSciNet  MATH  Google Scholar 

  • Martin RH, Smith HL (1990) Abstract functional differential equations and reaction–diffusion systems. Trans Am Math Soc 321: 1–44

    MathSciNet  MATH  Google Scholar 

  • Mollison D (1991) Dependence of epidemic and population velocities on basic parameters. Math Biosci 107: 255–287

    Article  MATH  Google Scholar 

  • Murray JD (2002) Mathematical biology, I: an introduction. Springer, New York

    Google Scholar 

  • Royden HL (2010) Real analysis, 4th edn. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Smith HL, Zhao X-Q (2001) Robust persistence for semidynamical systems. Nonlinear Anal 47: 6169–6179

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (1979) On a class of Hammerstein integral equations. Manuscr Math 29: 49–84

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (1992) Convergence results and Poincaré–Bendixson trichotomy for asymptotically autonomous differential equations. J Math Biol 30: 755–763

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR, Zhao X-Q (2001) A non-local delayed and diffusive predator-prey model. Nonlinear Anal RWA 2: 145–160

    Article  MathSciNet  MATH  Google Scholar 

  • van den Bosch F, Metz JAJ, Diekmann O (1990) The velocity of spatial population expansion. J Math Biol 28: 529–565

    Article  MathSciNet  MATH  Google Scholar 

  • Volpert AI, Volpert VA, Volpert VA (1994) Traveling wave solutions of parabolic systems. Translations of Mathematical Monographs, AMS

  • Wang W, Zhao X-Q (2011) A nonlocal and time-delayed reaction–diffusion model of Dengue transmission. SIAM J Appl Math 71: 147–168

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger HF (1982) Long-time behavior of a class of biological models. SIAM J Math Anal 13: 353–396

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger HF, Lewis MA, Li B (2002) Analysis of linear determinacy for spread in cooperative models. J Math Biol 45: 183–218

    Article  MathSciNet  MATH  Google Scholar 

  • White DJ, Chang H-G, Benach JL, Bosler EM, Meldrum SC, Means RG, Debbie JG, Birkhead GS, Morse DL (1991) The Geographic spread and temporal increase of the Lyme disease epidemic. J Am Med Assoc 266: 1230–1236

    Article  Google Scholar 

  • Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qiang Zhao.

Additional information

Research supported in part by the NSERC of Canada and the MITACS of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, XQ. Global dynamics of a reaction and diffusion model for Lyme disease. J. Math. Biol. 65, 787–808 (2012). https://doi.org/10.1007/s00285-011-0482-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0482-9

Keywords

Mathematics Subject Classification (2000)

Navigation