Skip to main content
Log in

Selective sweeps for recessive alleles and for other modes of dominance

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A selective sweep describes the reduction of linked genetic variation due to strong positive selection. If s is the fitness advantage of a homozygote for the beneficial allele and h its dominance coefficient, it is usually assumed that h = 1/2, i.e. the beneficial allele is co-dominant. We complement existing theory for selective sweeps by assuming that h is any value in [0, 1]. We show that genetic diversity patterns under selective sweeps with strength s and dominance 0 < h < 1 are similar to co-dominant sweeps with selection strength 2hs. Moreover, we focus on the case h = 0 of a completely recessive beneficial allele. We find that the length of the sweep, i.e. the time from occurrence until fixation of the beneficial allele, is of the order of \({\sqrt{N/s}}\) generations, if N is the population size. Simulations as well as our results show that genetic diversity patterns in the recessive case h = 0 greatly differ from all other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton N (1998) The effect of hitch-hiking on neutral genealogies. Genet Res 72: 123–133

    Article  Google Scholar 

  • Barton N, Etheridge A, Sturm A (2004) Coalescence in a random background. Ann Appl Probab 14(2): 754–785

    Article  MathSciNet  MATH  Google Scholar 

  • Bürger R, Ewens W (1995) Fixation probabilities of additive alleles in diploid populations. J Math Biol 33: 557–575

    Article  Google Scholar 

  • Cavatorta J, Savage A, Yeam I, Gray S, Jahn M (2008) Positive Darwinian selection at single amino acid sites conferring plant virus resistance. J Mol Evol 67: 551–559

    Article  Google Scholar 

  • Charlesworth B (1998) Adaptive evolution: the struggle for dominance. Curr Biol 8(14): R502–R504

    Article  Google Scholar 

  • Dawson D, Gorostiza L, Wakolbinger A (2001) Occupation time fluctuations in branching systems. J Theor Probab 14: 729–796

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett R, Schweinsberg J (2004) Approximating selective sweeps. Theor Popul Biol 66: 129–138

    Article  MATH  Google Scholar 

  • Etheridge A, Pfaffelhuber P, Wakolbinger A (2006) An approximate sampling formula under genetic hitchhiking. Ann Appl Probab 16: 685–729

    Article  MathSciNet  MATH  Google Scholar 

  • Ewens W (2004) Mathematical Population Genetics, I. Theoretical introduction. 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Ewing G, Hermisson J (2010) MSMS: a coalescent simulation program including recombination, demographic structure, and selection at a single locus. Bioinformatics 26(16): 2064–2065

    Article  Google Scholar 

  • Garcia G, Flores A, Fernandez-Salas I, Saavedra-Rodriguez K, Reyes-Solis G, Lozano-Fuentes S, Guillermo Bond J, Casas-Martinez M, Ramsey J, Garcia-Rejon J, Dominguez-Galera M, Ranson H, Hemingway J, Eisen L, Black W IV (2009) Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in Mexico. PLoS Negl Trop Dis 3: e531

    Article  Google Scholar 

  • Hamblin M, Di Rienzo A (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66: 1669–1679

    Article  MATH  Google Scholar 

  • Hermisson J, Pennings P (2005) Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169(4): 2335–2352

    Article  Google Scholar 

  • Hermisson J, Pfaffelhuber P (2008) The pattern of genetic hitchhiking under recurrent mutation. Electron J Probab 13(68): 2069–2106

    MathSciNet  MATH  Google Scholar 

  • Jensen J, Kim Y, Bauer DuMont V, Aquadro C, Bustamante C (2005) Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170: 1401–1410

    Article  Google Scholar 

  • Kaplan N, Hudson R, Langley C (1989) The ‘Hitchhiking effect’ revisited. Genetics 123: 887–899

    Google Scholar 

  • Karlin S, Taylor H (1981) A Second Course in Stochastic Processes. Academic Press, London

    MATH  Google Scholar 

  • Kim Y, Stephan W (2002) Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 160: 765–777

    Google Scholar 

  • Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47: 713–719

    Google Scholar 

  • Leocard S, Pardoux E (2010) Evolution of the ancestral recombination graph along the genome in case of selective sweep. J Math Biol 61(6): 819–841

    Article  MathSciNet  MATH  Google Scholar 

  • Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favorable gene. Genet Res 23: 23–35

    Article  Google Scholar 

  • McVean G (2007) The structure of linkage disequilibrium around a selective sweep. Genetics 175: 1395–1406

    Article  Google Scholar 

  • Nielsen R, Williamson S, Kim Y, Hubisz M, Clark A, Bustamante C (2005) Genomic scans for selective sweeps using SNP data. Genome Res 15: 1566–1575

    Article  Google Scholar 

  • Ordon F, Friedt W, Scheurer K, Pellio B, Werner K, Neuhaus G, Huth W, Habekuss A, Graner A (2004) Molecular markers in breeding for virus resistance in barley. J Appl Genet 45: 145–159

    Google Scholar 

  • Pennings P, Hermisson J (2006a) Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol Biol Evol 23(5): 1076–1084

    Article  Google Scholar 

  • Pennings P, Hermisson J (2006b) Soft sweeps III—the signature of positive selection from recurrent mutation. PLoS Genet 2: e186

    Article  Google Scholar 

  • Pfaffelhuber P, Studeny A (2007) Approximating genealogies for partially linked neutral loci under a selective sweep. J Math Biol 55: 299–330

    Article  MathSciNet  MATH  Google Scholar 

  • Stephan W, Wiehe T, Lenz M (1992) The effect of strongly selected substitutions on neutral polymorphism: analytical results based on diffusion theory. Theor Popul Biol 41: 237–254

    Article  MATH  Google Scholar 

  • Stephan W, Song Y, Langley C (2006) The hitchhiking effect on linkage disequilibrium between linked neutral loci. Genetics 172: 2647–2663

    Article  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DN sequences in finite populations. Genetics 105: 437–460

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595

    Google Scholar 

  • Teshima K, Przeworski M (2006) Directional positive selection on an allele of arbitrary dominance. Genetics 172: 713–718

    Article  Google Scholar 

  • Teshima K, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps?. Genome Res 16: 702–712

    Article  Google Scholar 

  • van Herwaarden O, van der Wal N (2002) Extinction time and age of an allele in a large finite population. Theor Popul Biol 61: 311–318

    Article  MATH  Google Scholar 

  • Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7: 256–276

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pfaffelhuber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewing, G., Hermisson, J., Pfaffelhuber, P. et al. Selective sweeps for recessive alleles and for other modes of dominance. J. Math. Biol. 63, 399–431 (2011). https://doi.org/10.1007/s00285-010-0382-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0382-4

Keywords

Mathematics Subject Classification (2000)

Navigation