Skip to main content
Log in

Parameter estimation with a novel gradient-based optimization method for biological lattice-gas cellular automaton models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Lattice-gas cellular automata (LGCAs) can serve as stochastic mathematical models for collective behavior (e.g. pattern formation) emerging in populations of interacting cells. In this paper, a two-phase optimization algorithm for global parameter estimation in LGCA models is presented. In the first phase, local minima are identified through gradient-based optimization. Algorithmic differentiation is adopted to calculate the necessary gradient information. In the second phase, for global optimization of the parameter set, a multi-level single-linkage method is used. As an example, the parameter estimation algorithm is applied to a LGCA model for early in vitro angiogenic pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6): 464–478

    Article  Google Scholar 

  • Alber M, Kiskowski M, Jiang Y (2004) Lattice gas cellular automata model for rippling in myxobacteria. Physica D 191: 343

    Article  MATH  Google Scholar 

  • Ali M, Storey C (1994) Topographical multilevel single linkage. J Global Optim 5: 349–358

    Article  MathSciNet  MATH  Google Scholar 

  • Beikasim S, Shridhar M, Ahmadi M (1991) Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognit 24(12): 1117–1138

    Article  Google Scholar 

  • Bentoutou Y, Taleb N, Mezouar MCE, Taleb M, Jetto L (2002) An invariant approach for image registration in digital subtraction angiography. Pattern Recognit 35(12): 2853–2865

    Article  MATH  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6): 653–660

    Article  Google Scholar 

  • Carmeliet P, Jain R (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257

    Article  Google Scholar 

  • Cerny V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45(1): 41–51

    Article  MathSciNet  MATH  Google Scholar 

  • Chaplain M, McDougall S, Anderson A (2006) Mathematical modeling of tumor-induced angiogenesis. Ann Rev Biomed Eng 8: 233–257

    Article  Google Scholar 

  • Chappell J, Taylor S, Ferrara N, Bautch V (2009) Local guidance of emerging vessel sprouts requires soluble FLT-1. Dev Cell 17(15): 377–386

    Article  Google Scholar 

  • Dennis J, Moree J (1977) Quasi-Newton methods, motivation and theory. SIAM Rev 19(1): 46–89

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation. Birkhauser, Boston

    MATH  Google Scholar 

  • Drasdo D, Kree R, McCaskill J (1995) A Monte Carlo approach to tissue cell populations. Phys Rev Lett E 52(6): 6635–6657

    Google Scholar 

  • Flouda, C, Pardalos, P (eds) (2000) Optimization in computational chemistry and molecular biology. Kluwer Academic Publishers, Amsterdam

    Google Scholar 

  • Flusser J, Suk T (1993) Pattern recognition by affine moment invariants. Pattern Recognit 26(1): 167–174

    Article  MathSciNet  Google Scholar 

  • Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14): 1505–1508

    Article  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6): 1163–1177

    Article  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing, London

    MATH  Google Scholar 

  • Griewank A (2000) Evaluating derivatives. SIAM, Philadelphia

    MATH  Google Scholar 

  • Griewank A, Juedes D, Utke J (1996) Algorithm 755: ADOL-C—a package for the automatic differentiation of algorithms written in C/C++. ACM Trans Math Software 22(2): 131–167

    Article  MATH  Google Scholar 

  • Hastings W (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1): 97–109

    Article  MATH  Google Scholar 

  • Hatzikirou H, Deutsch A (2008) Cellular automata as microscopic models of cell migration in heterogeneous environments. Curr Top Dev Biol 81: 401–434

    Article  Google Scholar 

  • Hatzikirou H, Brusch L, Deutsch A (2010a) From cellular automaton rules to an effective macroscopic mean-field description. Acta Phys Pol B Proc Suppl 3: 399–416

    Google Scholar 

  • Hatzikirou H, Brusch L, Schaller C, Simon M, Deutsch A (2010b) Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput Math Appl 59(7): 2326–2339

    Article  MathSciNet  MATH  Google Scholar 

  • Horst R, Pardalos P (1995) Handbook of global optimization. Kluwer Academic Publishers, Amsterdam

    MATH  Google Scholar 

  • Hynes R (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8(9): 918–922

    Article  Google Scholar 

  • Jackson C (2002) Matrix metalloproteinases and angiogenesis. Curr Opin Nephrol Hypertens 11(3): 295–299

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598): 671–680

    Article  MathSciNet  Google Scholar 

  • Likas A, Vlassis N, Verbeek J (2003) The global k-means clustering algorithm. Pattern Recognit 36: 451–461

    Article  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, London

    Google Scholar 

  • Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10): 869–883

    Article  Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6): 1087–1092

    Article  Google Scholar 

  • Mitchell M, Crutchfield J, Das R (1996) Evolving cellular automata with genetic algorithms: a review of recent work. In: Goodman E (ed) Proceedings of the first international conference on evolutionary computation and its applications. Russian Academy of Sciences, Moscow

    Google Scholar 

  • More J, Thuente D (1994) Line search algorithms with guaranteed sufficient decrease. ACM Trans Math Software 20(3): 286–307

    Article  MathSciNet  MATH  Google Scholar 

  • Nehls V, Drenckhahn D (1995) A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 3(50): 311–322

    Article  Google Scholar 

  • Pepper M (2001) Extracellular proteolysis and angiogenesis. J Thromb Haemost 1(86): 346–355

    Google Scholar 

  • Polak E (1997) Optimization, algorithms and consistent approximations. Springer, New York

    MATH  Google Scholar 

  • Rinnooy-Kan A, Timmer G (1987a) Stochastic global optimization methods. I. Clustering methods. Math Program 39: 27–56

    Article  MathSciNet  MATH  Google Scholar 

  • Rinnooy-Kan A, Timmer G (1987b) Stochastic global optimization methods. II. Multi level methods. Math Program 39: 57–78

    Article  MathSciNet  MATH  Google Scholar 

  • Rodriguez-Fernandez M, Mendes P, Banga J (2005) A hybrid approach for efficient and robust parameter estimation in biochemical pathways. BioSystems 83: 248–265

    Article  Google Scholar 

  • Schatzman M (2002) Numerical analysis: a mathematical introduction. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Sharapov R, Lapshin A (2006) Convergence of genetic algorithms. Math T Pattern Recognit 16(3): 392–397

    Article  Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Phil Trans R Soc London 237: 37–72

    Article  Google Scholar 

  • Vlcek J, Luksan L (2006) Shifted limited-memory variable metric methods for large-scale unconstrained optimization. J Comput Appl Math 186(2): 365–390

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Deutsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mente, C., Prade, I., Brusch, L. et al. Parameter estimation with a novel gradient-based optimization method for biological lattice-gas cellular automaton models. J. Math. Biol. 63, 173–200 (2011). https://doi.org/10.1007/s00285-010-0366-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0366-4

Keywords

Mathematics Subject Classification (2000)

Navigation