Skip to main content
Log in

Effects of anisotropic interactions on the structure of animal groups

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper proposes an agent-based model which reproduces different structures of animal groups. The shape and structure of the group is the effect of simple interaction rules among individuals: each animal deploys itself depending on the position of a limited number of close group mates. The proposed model is shown to produce clustered formations, as well as lines and V-like formations. The key factors which trigger the onset of different patterns are argued to be the relative strength of attraction and repulsion forces and, most important, the anisotropy in their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki I (1980) An analysis of the schooling behavior of fish: internal organization and communication process. Bull Ocean Res Inst Univ Tokyo 12: 1–65

    MathSciNet  Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008a) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci 105: 1232–1237

    Article  Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008b) Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim Behav 76: 201–215

    Article  Google Scholar 

  • Bullo F, Cortés J, Martínez S (2009) Distributed control of robotic networks: a mathematical approach to motion coordination algorithms. In: Princeton series in applied mathematics. Princeton University Press, Princeton

  • Chao D, Levin SA (1999) A simulation of herding behavior: the emergence of large-scale phenomena from local interactions. In: Ruan S, Wolkowicz GSK, Wu J (eds) Differential equations with applications to biology, vol 21 of Fields Institute Communications, AMS Providence, RI, pp 81–95

  • Chuang Y, D’Orsogna MR, Marthaler D, Bertozzi AL, Chayes LS (2007) State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Physica D 232: 33–47

    Article  MathSciNet  MATH  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218: 1–11

    Article  MathSciNet  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433: 513–516

    Article  Google Scholar 

  • Cucker F, Smale S (2007) Emergent behavior in flocks. IEEE Trans Automat Contr 52: 852–862

    Article  MathSciNet  Google Scholar 

  • Cutts C, Speakman J (1994) Energy savings in formation flight of pink-footed geese. J Exp Biol 189: 251–261

    Google Scholar 

  • Filippov AF (1988) Differential equations with discontinuous righthand sides, vol 18 of Mathematics and its applications. Kluwer, Dordrecht

  • Frasca P, Mason P, Piccoli B (2009) Detection of Gaussian signals via hexagonal sensor networks. Int J Math Model Numer Optim 1: 39–55

    Article  MATH  Google Scholar 

  • Giardina I (2008) Collective behavior in animal groups: theoretical models and empirical studies. HFSP J 2: 205–219

    Article  Google Scholar 

  • Gould LL, Heppner FH (1974) The vee formation of Canada geese. Auk 91: 494–506

    Google Scholar 

  • Grégoire G, Chaté H, Tu Y (2003) Moving and staying together without a leader. Physica D 181: 157–170

    Article  MathSciNet  MATH  Google Scholar 

  • Gueron S, Levin SA, Rubenstein DI (1996) The dynamics of herds: from individuals to aggregations. J Theor Biol 182: 85–98

    Article  Google Scholar 

  • Hainsworth FR (1987) Precision and dynamics of positioning by Canada geese flying in formation. J Exp Biol 128: 445–462

    Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31: 295–311

    Article  Google Scholar 

  • Hemelrijk CK, Hildenbrandt H (2008) Self-organized shape and frontal density of fish schools. Ethology 114: 245–254

    Article  Google Scholar 

  • Heppner FH (1974) Avian flight formations. Bird-Banding 45: 160–169

    Article  Google Scholar 

  • Huth A, Wissel C (1992) The simulation of the movement of fish schools. J Theor Biol 156: 365–385

    Article  Google Scholar 

  • Inada Y, Kawachi K (2002) Order and flexibility in the motion of fish schools. J Theor Biol 214: 371–387

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. In: Oxford series in ecology and evolution. Oxford University Press, New York

  • Kunz H, Hemelrijk CK (2003) Artificial fish schools: collective effects of school size, body size, and body form. Artif Life 9: 237–253

    Article  Google Scholar 

  • Li YX, Lukeman R, Edelstein-Keshet L (2008) Minimal mechanisms for school formations in self- propelled particles. Physica D 237: 699–720

    Article  MathSciNet  MATH  Google Scholar 

  • Liberzon D (2003) Switching in systems and control. Birkhäuser, Boston

    MATH  Google Scholar 

  • Lukeman R, Edelstein-Keshet L (2009) Personal communication

  • Lukeman R, Li YX, Edelstein-Keshet L (2009) A conceptual model for milling formations in biological aggregates. Bull Math Biol 71: 352–382

    Article  MathSciNet  MATH  Google Scholar 

  • Mogilner A, Edelstein-Keshet L, Bent L, Spiros A (2003) Mutual interactions, potentials, and individual distance in a social aggregation. J Math Biol 47: 353–389

    Article  MathSciNet  MATH  Google Scholar 

  • Nathan A, Barbosa VC (2008) V-like formations in flocks of artificial birds. Artif Life 14: 179–188

    Article  Google Scholar 

  • Parrish JK, Viscido SV, Grunbaum D (2002) Self-organized fish schools: an examination of emergent properties. Biol Bull 202: 296–305

    Article  Google Scholar 

  • Seiler P, Pant A, Hedrick JK (2003) A systems interpretation for observations of bird V-formations. J Theor Biol 221: 279–287

    Article  Google Scholar 

  • Seiler P, Pant A, Hedrick JK (2004) Disturbance propagation in vehicle strings. IEEE Trans Automat Contr 49: 1835–1842

    Article  MathSciNet  Google Scholar 

  • Shi H, Wang L, Chu T (2006) Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D 213: 51–65

    Article  MathSciNet  MATH  Google Scholar 

  • Speakman JR, Banks D (1998) The function of flight formations in Greylag Geese Anser anser; energy saving or orientation? Ibis 140: 280–287

    Article  Google Scholar 

  • Sumpter DJT (2006) The principles of collective animal behaviour. Phil Trans R Soc B 361: 5–22

    Article  Google Scholar 

  • Swaroop D, Hedrick JK (1996) String stability of interconnected systems. IEEE Trans Automat Contr 41: 349–357

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner HG, Jadbabaie A, Pappas GJ (2007) Flocking in fixed and switching networks. IEEE Trans Automat Contr 52: 863–868

    Article  MathSciNet  Google Scholar 

  • Tien JH, Levin SA, Rubenstein DI (2004) Dynamics of fish shoals: identifying key decision rules. Evol Ecol Res 6: 555–565

    Google Scholar 

  • Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75: 1226–1229

    Article  Google Scholar 

  • Warburton K, Lazarus J (1991) Tendency-distance models of social cohesion in animal groups. J Theor Biol 150: 473–488

    Article  Google Scholar 

  • Weimerskirch H, Martin J, Clerquin Y, Alexandre P, Jiraskova S (2001) Energy saving in flight formation. Nature 413: 697–698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetto Piccoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristiani, E., Frasca, P. & Piccoli, B. Effects of anisotropic interactions on the structure of animal groups. J. Math. Biol. 62, 569–588 (2011). https://doi.org/10.1007/s00285-010-0347-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0347-7

Keywords

Mathematics Subject Classification (2000)

Navigation