Skip to main content
Log in

A Lagrangian particle method for reaction–diffusion systems on deforming surfaces

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Reaction–diffusion processes on complex deforming surfaces are fundamental to a number of biological processes ranging from embryonic development to cancer tumor growth and angiogenesis. The simulation of these processes using continuum reaction–diffusion models requires computational methods capable of accurately tracking the geometric deformations and discretizing on them the governing equations. We employ a Lagrangian level-set formulation to capture the deformation of the geometry and use an embedding formulation and an adaptive particle method to discretize both the level-set equations and the corresponding reaction–diffusion. We validate the proposed method and discuss its advantages and drawbacks through simulations of reaction–diffusion equations on complex and deforming geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adalsteinsson D, Sethian JA (2003) Transport and diffusion of material quantities on propagating interfaces via level set methods. J Comput Phys 185: 271–288

    Article  MATH  MathSciNet  Google Scholar 

  • Baker R, Maini P (2007) A mechanism for morphogen-controlled domain growth. J Math Biol 54(5): 597–622

    Article  MATH  MathSciNet  Google Scholar 

  • Bänsch E, Morin P, Nochetto RH (2005) A finite element method for surface diffusion: the parametric case. J Comput Phys 203: 321–343

    Article  MATH  MathSciNet  Google Scholar 

  • Bergdorf M, Koumoutsakos P (2006) A Lagrangian particle-wavelet method. Multiscale Model Simul 5(3): 980–995

    Article  MATH  MathSciNet  Google Scholar 

  • Bertalmio M, Cheng L-T, Osher S, Sapiro G (2001) Variational problems and partial differential equations on implicit surfaces. J Comput Phys 174: 759–780

    Article  MATH  MathSciNet  Google Scholar 

  • Chaplain MAJ, Ganesh M, Graham IG (2001) Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J Math Biol V42(5): 387–423

    Article  MathSciNet  Google Scholar 

  • Chen S, Merriman B, Osher S, Smereka P (1997) A simple level set method for solving Stefan problems. J Comput Phys 135: 8–29

    Article  MATH  MathSciNet  Google Scholar 

  • Enright D, Fedkiw R, Ferziger J, Mitchell I (2002) A hybrid particle level set method for improved interface capturing. J Comput Phys 183(1): 83–116

    Article  MATH  MathSciNet  Google Scholar 

  • Harrison LG, Kolar M (1988) Coupling between reaction–diffusion prepattern and expressed morphogenesis, applied to desmids and dasyclads. J Theor Biol 130(4): 493–515

    Article  MathSciNet  Google Scholar 

  • Harrison LG, Wehner S, Holloway DM (2001) Complex morphogenesis of surfaces: theory and experiment on coupling of reaction–diffusion patterning to growth. Faraday Discuss 120: 277–294

    Article  Google Scholar 

  • Hieber SE, Koumoutsakos P (2005) A Lagrangian particle level set method. J Comput Phys 210(1): 342–367

    Article  MATH  MathSciNet  Google Scholar 

  • Holloway DM, Harrison LG (1999) Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction–diffusion patterned catalysis of cell surface growth. Phil Trans R Soc Lond B 354: 417–433

    Article  Google Scholar 

  • Jiang G-S, Peng D (2000) Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J Sci Comput 21(6): 2126–2143

    Article  MATH  MathSciNet  Google Scholar 

  • Kaandorp JA, Sloot PMA, Merks RMH, Bak RPM, Vermeij MJA, Maier C (2005) Morphogenesis of the branching reef coral madracis mirabilis. Proc R Soc B 272: 127–133

    Article  Google Scholar 

  • Koch AJ, Meinhardt H (1994) Biological pattern formation: from basic mechanisms to complex structures. Rev Modern Phys 66(4): 1481–1507

    Article  Google Scholar 

  • Koumoutsakos P (2005) Multiscale flow simulations using particles. Annu Rev Fluid Mech 37(1): 457–487

    Article  MathSciNet  Google Scholar 

  • Macklin P, Lowengrub J (2005) Evolving interfaces via gradients of geometry-dependent interior poisson problems: application to tumor growth. J Comput Phys 203: 191–220

    Article  MATH  MathSciNet  Google Scholar 

  • Macklin P, McDougall S, Anderson A, Chaplain M, Cristini V, Lowengrub J (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4): 765–798

    Article  MathSciNet  Google Scholar 

  • Madzvamuse A, Maini PK (2007) Velocity-induced numerical solutions of reaction–diffusion systems on continuously growing domains. J Comput Phys 225: 100–119

    Article  MATH  MathSciNet  Google Scholar 

  • Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95(7): 3146–3160

    Article  Google Scholar 

  • Murray JD (2002) Mathematical biology I: an introduction. In: Interdisciplinary applied mathematics, vol 17. Springer, New York

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. In: Applied mathematical sciences, vol 153. Springer, New York

  • Pearson JE (1993) Complex patterns in a simple system. Science 261(5118): 189–192

    Article  Google Scholar 

  • Peng D, Merriman B, Osher S, Zhao H, Kang M (1999) A PDE-based fast local level set method. J Comput Phys 155: 410–438

    Article  MATH  MathSciNet  Google Scholar 

  • Ruuth SJ, Merriman B (2008) A simple embedding method for solving partial differential equations on surfaces. J Comput Phys 227(3): 1943–1961

    Article  MATH  MathSciNet  Google Scholar 

  • Sbalzarini IF, Hayer A, Helenius A, Koumoutsakos P (2006) Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J 90(3): 878–885

    Article  Google Scholar 

  • Sethian JA (1999) Fast marching methods. SIAM Rev 41(2): 199–235

    Article  MATH  MathSciNet  Google Scholar 

  • Stone HA (1990) A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys Fluids A 2(1): 111–112

    Article  Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1): 146–159

    Article  MATH  Google Scholar 

  • Thompson DW (1942) On growth and form, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B 237(1/2): 37–72

    Article  Google Scholar 

  • Varea C, Aragon JL, Barrio RA (1999) Turing patterns on a sphere. Phys Rev E 60(4): 4588–4592

    Article  Google Scholar 

  • Xu J-J, Zhao H (2003) An eulerian formulation for solving partial differential equations along a moving interface. SIAM J Sci Comput 19(1–3): 573–594

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Koumoutsakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergdorf, M., Sbalzarini, I.F. & Koumoutsakos, P. A Lagrangian particle method for reaction–diffusion systems on deforming surfaces. J. Math. Biol. 61, 649–663 (2010). https://doi.org/10.1007/s00285-009-0315-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0315-2

Mathematics Subject Classification (2000)

Navigation