Skip to main content
Log in

Proliferation model dependence in fluctuation analysis: the neutral case

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We discuss the evaluation of Luria-Delbrück fluctuation experiments under Bellman-Harris models of cell proliferation. It is shown that under certain very natural assumptions concerning the life-time distributions and the offspring distributions of mutant and non-mutant cells, the suitably normed and centered number of mutants contained in a large culture of bacteria (or the like) converges to a certain stable random variable with index 1. The result obtains under the assumption that the mutation under consideration is “neutral” in the sense that on average and in the long run, mutant cells produce the same number of offspring as non-mutant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angerer WP (2001) A note on the evaluation of fluctuation experiments. Mutat Res 479: 207–224

    Google Scholar 

  • Athreya KB, Ney PE (1972) Branching Processes. Die Grundlehren der mathematischen Wissenschaften, Bd. 196. Springer, Berlin

    Google Scholar 

  • Bachl J, Dessing M, Olsson C, von Borstel RC, Steinberg C (1999) An experimental solution for the Luria-Delbrück fluctuation problem in measuring hypermutation rates. Proc Natl Acad Sci USA 96: 6847–6849

    Article  Google Scholar 

  • Dewanji A, Luebeck EG, Moolgavkar SH (2005) A generalized Luria-Delbrück model. Math Biosci 197(2): 140–152

    Article  MATH  MathSciNet  Google Scholar 

  • Foster PL (1999) Sorting out mutation rates. Proc Natl Acad Sci USA 96: 7617–7618

    Article  Google Scholar 

  • Hardy GH (1949) Divergent series. At the Clarendon Press (Geoffrey Cumberlege) XIV, Oxford

    MATH  Google Scholar 

  • Jagers P (1969) Renewal theory and the almost sure convergence of branching processes. Ark Mat 7: 495–504

    Article  MATH  MathSciNet  Google Scholar 

  • Kingman JFC (1963) Ergodic properties of continuous-time Markov processes and their discrete skeletons. Proc Lond Math Soc III Ser 13: 593–604

    Article  MATH  MathSciNet  Google Scholar 

  • Kuczek T (1982) On the convergence of the empiric age distribution for one-dimensional supercritical age dependent branching processes. Ann Probab 10: 252–258

    Article  MATH  MathSciNet  Google Scholar 

  • Kuczek T On some results in branching processes and GA/G/∞ queues with applications to biology. Ph.D. Thesis, Purdue University

  • Lea DE, Coulson DA (1949) The distribution of the number of mutants in bacterial populations. J Genet 49: 264–284

    Article  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511

    Google Scholar 

  • Nádas A, Goncharova EI, Rossman TG (1996a) Maximum likelihood estimation of spontaneous mutation rates from large initial populations. Mutat Res 351: 9–17

    Google Scholar 

  • Nádas A, Goncharova EI, Rossman TG (1996b) Mutations and infinity: improved statistical methods for estimating spontaneous rates. Environ Mol Mutagen 28: 90–99

    Article  Google Scholar 

  • Oprea M, Kepler TB (2001) Improved inference of mutation rates: II. Generalization of the Luria-Delbrück distribution for realistic cell-cycle time distributions. Theor Popul Biol 59: 49–59

    Article  MATH  Google Scholar 

  • Rosche WA, Foster PL (2000) Determining mutation rates in bacterial populations. Methods 20: 4–17

    Article  Google Scholar 

  • Rossman TG, Goncharova EI, Nádas A (1995) Modeling and measurement of the spontaneous mutation rate in mammalian cells. Mutat Res 328: 21–30

    Google Scholar 

  • Schuh H-J (1982) Seneta constants for the supercritical Bellman-Harris process. Adv Appl Probab 14: 732–751

    Article  MATH  MathSciNet  Google Scholar 

  • Stewart FM (1994) Fluctuation tests: how reliable are the estimates of mutation rates. Genetics 137: 1139–1146

    Google Scholar 

  • Stewart FM, Gordon DM, Levin BR (1990) Fluctuation analysis: the probability distribution of the number of mutants under different conditions. Genetics 124: 175–185

    Google Scholar 

  • Stone CJ (1972) An upper bound for the renewal function. Ann Math Stat 43: 2050–2052

    Article  MATH  Google Scholar 

  • Tan WY (1982) On distribution theories for the number of mutants in cell populations. SIAM J Appl Math 42: 719–730

    Article  MATH  MathSciNet  Google Scholar 

  • Tan WY (1989) On the distribution of mutants in cell populations with both forward and backward mutation. SIAM J Appl Math 49: 186–196

    Article  MATH  MathSciNet  Google Scholar 

  • Uchiyama K (1976) On limit theorems for non-critical Galton-Watson processes with EZ 1 log Z 1 =  ∞. In: Proc. 3rd Japan-USSR Symp. Probab. Theory, Taschkent 1975. Lect. Notes Math., vol 550, pp 646–649

  • Zheng Q (1999) Progress of a half century in the study of the Luria-Delbrück distribution. Math Biosci 162: 1–32

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang P. Angerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angerer, W.P. Proliferation model dependence in fluctuation analysis: the neutral case. J. Math. Biol. 61, 55–93 (2010). https://doi.org/10.1007/s00285-009-0294-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0294-3

Keywords

Mathematics Subject Classification (2000)

Navigation