Skip to main content
Log in

Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Castets V, Dulos E, Boissonade J, De Kepper P (1990) Experimental evidence of a sustained Turing–type equilibrium chemical pattern. Phys Rev Lett 64(3): 2953–2956

    Article  Google Scholar 

  • Chaplain M, Ganesh AJ, Graham IG (2001) Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumor growth. J Math Biol 42: 387–423

    Article  MATH  MathSciNet  Google Scholar 

  • Connell McCluskey C (2005) A strategy for constructing Lyapunov functions for non-autonomous linear differential equations. Linear Algebra Appl 409: 100–110

    Article  MATH  MathSciNet  Google Scholar 

  • Crampin EJ, Gaffney EA, Maini PK (1999) Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull Math Biol 61: 1093–1120

    Article  Google Scholar 

  • Crampin EJ, Gaffney EA, Maini PK (2002) Mode doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model. J Math Biol 44: 107–128

    Article  MATH  MathSciNet  Google Scholar 

  • Crampin EJ, Hackborn WW, Maini PK (2002) Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull Math Biol 64: 746–769

    Article  Google Scholar 

  • Edelstein-Keshet L (1988) Mathematical models in biology. Random House, New York

    MATH  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12: 30–39

    Article  Google Scholar 

  • Gjorgjieva J, Jacobsen J (2007) Turing patterns on growing spheres: the exponential case. Dynamical systems and differential equations. In: Proceedings of the 6th AIMS international conference. Discrete continuous dynamical systems supplement, USA, pp 436–445

  • Golub GH, Van Loan CF (1996) Matrix computations. JHU Press ISBN 0801854148

  • Kondo S, Asai R (1995) A reaction-diffusion wave on the skin of the marine anglefish, Pomacanthus. Nature 376: 765–768

    Article  Google Scholar 

  • Liaw SS, Yang CC, Liu RT, Hong JT (2001) Turing model patterns of lady beetles. Phys Rev E 64: 041909

    Article  Google Scholar 

  • Madzvamuse A (2005) Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J Comp Phys 24(1): 239–263

    MathSciNet  Google Scholar 

  • Madzvamuse A (2008) Stability analysis of reaction-diffusion systems with constant coefficients on growing domains. Int J Dyn Diff Eq 1(4): 250–262

    MATH  MathSciNet  Google Scholar 

  • Madzvamuse A, Maini PK (2007) Velocity-induced numerical solutions of reaction-diffusion systems on fixed and growing domains. J Comp Phys 225: 100–119

    Article  MATH  MathSciNet  Google Scholar 

  • Madzvamuse A, Maini PK, Wathen AJ (2003) A moving grid finite element method applied to a model biological pattern generator. J Comp Phys 190: 478–500

    Article  MATH  MathSciNet  Google Scholar 

  • Madzvamuse A, Wathen AJ, Maini PK (2005) A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. J Sci Comp 24(2): 247–262

    Article  MATH  MathSciNet  Google Scholar 

  • Maini PK, Crampin EJ, Madzvamuse A, Wathen AJ, Thomas RDK (2002) Implications of domain growth in morphogenesis. In: Capaso V (ed) Mathematical modelling and computing in biology and medicine. Proceedings of the 5th European conference for mathematics and theoretical biology: conference, Milan, vol 153, pp 67–73

  • Maini PK, Baker RE, Chong CM (2006) The Turing model comes of molecular age, (Invited Perspective). Science 314: 1397–1398

    Article  Google Scholar 

  • Murray JD (2002) Mathematical biology I and II, 3rd edn. Springer, Berlin

    Google Scholar 

  • Oster AM, Bressloff PC (2006) A developmental model of ocular dominance column formation on a growing cortex. Bull Math Biol 68: 73–98

    Article  MathSciNet  Google Scholar 

  • Ouyang Q, Swinney HL (1991) Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352: 610–612

    Article  Google Scholar 

  • Painter KJ, Othmer HG, Maini PK (1999) Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc Natl Acad Sci 96: 5549

    Article  Google Scholar 

  • Plaza RG, Sánchez-Garduño F, Padilla P, Barrio RA, Maini PK (2004) The effect of growth and curvature on pattern formation. J Dynam Diff Equ 16(4): 1093–11214

    Article  MATH  Google Scholar 

  • Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems. II. J Chem Phys 48: 1695–1700

    Article  Google Scholar 

  • Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. J Theor Biol 81: 389–400

    Article  MathSciNet  Google Scholar 

  • Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314: 1447–1450

    Article  Google Scholar 

  • Solnica-Krezel L (2003) Vertebrate development: taming the nodal waves. Curr Biol 13: R7-9

    Article  Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237: 37–72

    Article  Google Scholar 

  • Varea C, Aragón JL, Barrio RA (1999) Confined Turing patterns in growing systems. Phys Rev E 60: 4588–4592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anotida Madzvamuse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madzvamuse, A., Gaffney, E.A. & Maini, P.K. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol. 61, 133–164 (2010). https://doi.org/10.1007/s00285-009-0293-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0293-4

Keywords

Mathematics Subject Classification (2000)

Navigation