Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55: 755–784. doi:10.1146/annurev.ph.55.030193.003543
Article
Google Scholar
Baccala LA, Sameshima K (1999) Direct coherence: a tool for exploring functional interactions among brain structures. Methods for neural ensemble recordings. CRC press LLC, Boca Raton
Google Scholar
Bernardinelli Y, Haeberli C, Chatton JY (2005) Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution. Cell Calcium 37: 565–572. doi:10.1016/j.ceca.2005.03.001
Article
Google Scholar
Brandman O, Ferrell JE, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310: 496–498. doi:10.1126/science.1113834
Article
MathSciNet
Google Scholar
Brown EB, Shear JB, Adams SR, Tsien RY, Webb WW (1999) Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J 76: 489–499. doi:10.1016/S0006-3495(99)77217-6
Article
Google Scholar
Bullinger E (2005) System analysis of a programmed cell death model. In: Proceedings of the IEEE conference on decision and control. Seville, Spain, pp 7994–7999
Caines PE, Chan CW (1975) Feedback between stationary stochastic processes. IEEE Trans AC 20: 498–508
MATH
MathSciNet
Google Scholar
Cho K-H, Shin S-Y, Lee H-W, Wolkenhauer O (2003) Investigations into the analysis and modeling of the TNFα mediated NF-κB signaling pathway. Genome Res 13(11): 2413–2422. doi:10.1101/gr.1195703
Article
Google Scholar
Corrie JET, Katayama Y, Reid GP, Anson M, Trentham DR (1992) The development and application of photosensitive caged compounds to aid time-resolved structure determination of macromolecules. Philos Trans R Soc London Ser A 340: 233–243
Article
Google Scholar
Dayal BS, MacGregor JF (1996) Identification of finite impulse response models: methods and robustness issues. Ind Eng Chem Res 35: 4078–4090. doi:10.1021/ie960180e
Article
Google Scholar
Dong CY, Cho K-H, Yoon TW (2008) Identification of intra-cellular feedback loops by intermittent step perturbation method. In: Proceedings of the 17th IFAC world congress (IFAC2008), Seoul, Korea, pp 289–294
Doré S, Kearney RE, De Guise JA (1997) Experimental correlation-based identification of X-ray CT point spread function. Part 1: method and experimental results. Med Biol Eng Comput 35: 0118–0140
Google Scholar
Draper DR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York
MATH
Google Scholar
Durbin J (1960) The fitting of time series models. Rev Int Stat Inst 23: 233–244. doi:10.2307/1401322
Article
Google Scholar
Eisen H, Brachet P, da Silva PL, Jacob F (1967) Regulation of repressor inhibition in lambda. Proc Natl Acad Sci USA 66: 855–862. doi:10.1073/pnas.66.3.855
Article
Google Scholar
Eissing T, Allgower F, Bullinger E (2005) Robustness properties of apoptosis models with respect to parameter variations and intrinsic noise. IEE Proc Sys Biol 152: 221–228. doi:10.1049/ip-syb:20050046
Article
Google Scholar
Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, Scheurich P (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 279: 36892–36897. doi:10.1074/jbc.M404893200
Article
Google Scholar
Fang CZ, Xiao DY (1988) System identification. Tsinghua University Press, Beijing
Google Scholar
Gauss KF (1963) Theoria motus corporum celestium. english translation: theory of the motion of the heavenly bodies. Dover, New York
Google Scholar
Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185: 1–17. doi:10.1016/0003-2670(86)80028-9
Article
Google Scholar
Giovannardi S, Lando L, Peres A (1998) Flash photolysis of caged compounds: casting light on physiological processes. News Physiol Sci 13: 251–255
Google Scholar
Glendinning P (1994) Stability, instability and chaos: an introduction to the theory of nonlinear differential equations. Cambridge University Press, Cambridge
MATH
Google Scholar
Godfrey KR (1980) Correlation methods. Automatica 16: 527–534. doi:10.1016/0005-1098(80)90076-X
MATH
Article
Google Scholar
Golub G, van Loan C (1996) Matrix computations. The Johns Hopkins University Press, London
MATH
Google Scholar
Gouze J (1998) Positive and negative circuits in dynamical systems. J Biol Syst 6: 11–15. doi:10.1142/S0218339098000054
MATH
Article
Google Scholar
Granger CWJ (1962) Economic processes involving feedback. Princeton University, New Jersey
Google Scholar
Guldberg CM, Waage P (1879) Über die chemische Affinität. J Prakt Chem 19: 69. doi:10.1002/prac.18790190111
Article
Google Scholar
Haass C (1999) Apoptosis: dead end for neurodegeneration. Nature 399: 204–207. doi:10.1038/20314
Article
Google Scholar
Hoerl AE, Kennard RW (1970a) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42: 80–86. doi:10.2307/1271436
Article
Google Scholar
Hoerl AE, Kennard RW (1970b) Ridge regression: applications to nonorthogonal problems. Technometrics 12: 69–82. doi:10.2307/1267352
MATH
Article
Google Scholar
Hull TE, Dobell AR (1962) Random number generater. Soc Ind Appl Math Rev 4: 230–254
MATH
MathSciNet
Google Scholar
Hunter IW, Kearney RE (1983) Two-sided linear filter identification. Med Biol Eng Comput 21: 203–209. doi:10.1007/BF02441539
Article
Google Scholar
Kim D, Kwon Y-K, Cho K-H (2007a) Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. Bioessays 29(1): 85–90. doi:10.1002/bies.20511
Article
Google Scholar
Kim D, Rath O, Kolch W, Cho K-H (2007b) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene 26(31): 4571–4579. doi:10.1038/sj.onc.1210230
Article
Google Scholar
Kim J-R, Yoon Y, Cho K-H (2008) Coupled feedback loops form dynamic motifs of cellular networks. Biophys J 94(2): 359–365. doi:10.1529/biophysj.107.105106
Article
Google Scholar
Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice: concepts, implementation and application. Wiley-VCh Verlag GmbH & Co. KGaA, Berlin
Google Scholar
Kwon Y-K, Cho K-H (2008a) Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24(7): 987–994. doi:10.1093/bioinformatics/btn060
Article
Google Scholar
Kwon Y-K, Cho K-H (2008b) Coherent coupling of feedback loops: A design principle of cell signaling networks. Bioinformatics 24(17): 1926–1932. doi:10.1093/bioinformatics/btn337
Article
Google Scholar
Laub MT, Loomis WF (1998) A molecular network that produces spontaneous oscillations in excitable cells of dictyostelium. Mol Biol Cell 9: 3521–3532
Google Scholar
Levinson N (1947) The Wiener RMS error criterion in filter design and prediction. J Math Phys 25: 261–278
MathSciNet
Google Scholar
Ljung L (1987) System identification: theory for the user. Prentice Hall, New Jersey
MATH
Google Scholar
Ludwig R, Ehrhardt A (1995) Turn-key-ready wavelength-, repetition rate-and pulse width-tunable femtosecond hybrid modelocked semiconductor laser. Electron Lett 31: 1165–1167. doi:10.1049/el:19950796
Article
Google Scholar
Maeda M, Lu S, Shaulsky G, Miyazaki Y, Kuwayama H, Tanaka Y, Kuspa A, Loomis WF (2004) Periodic signaling controlled by an oscillatory circuit that includes protein kinase ERK2 and PKA. Science 304: 875–878. doi:10.1126/science.1094647
Article
Google Scholar
McClung FJ, Hellwarth RW (2004) Giant optical pulsations from ruby. J Appl Phys 33: 828–829. doi:10.1063/1.1777174
Article
Google Scholar
Mialocq JC, Amouyal E, Bernas A, Grand D (1982) Picosecond laser photolysis of aqueous indole and tryptophan. J Phys Chem 86: 3173–3177. doi:10.1021/j100213a022
Article
Google Scholar
Miao B, Zane R, Maksimovic D (2005) System identification of power converters with digital control through cross-correlation methods. IEEE Trans. Power Electron 20(5): 1093–1099. doi:10.1109/TPEL.2005.854035
Article
Google Scholar
Miyasaka H, Nagata T, Kiri M, Mataga N (1992) Femtosecond-picosecond laser photolysis studies on reduction process of excited benzophenone with N-methyldiphenylamine in acetonitrile solution. J Phys Chem 96: 8060–8065. doi:10.1021/j100199a042
Article
Google Scholar
Nerbonne JM (1986) Design and application of photolabile intracellular probes. Soc Gen Physiol Ser 40: 417–445
Google Scholar
Okamura T, Sancar A, Heelis PF, Begley TP, Hirata Y, Mataga N (1991) Picosecond laser photolysis studies on the photorepair of pyrimidine dimers by DNA photolyase. 1. Laser photolysis of photolyase-2-deoxyuridine dinucleotide photodimer complex. J Am Chem Soc 113: 3143–3145. doi:10.1021/ja00008a050
Article
Google Scholar
Oppenheim AV, Willsky AS, Nawab SH (1997) Signals & systems. Prentice-Hall, Englewood Cliffs
Google Scholar
Porta A, Furlan R, Rimoldi O, Pagani M, Malliani A, van de Borne P (2002) Quantifying the strength of the linear causal coupling in closed loop interacting cardiovascular variability signals. Biol Cybern 86: 241–251. doi:10.1007/s00422-001-0292-z
MATH
Article
Google Scholar
Rabiner L, Crochiere R, Allen J (1978) FIR system modeling and identification in the presence of noise and with band-limited inputs, acoustics, speech, and signal processing. IEEE Trans Signal Process 26: 319–333. doi:10.1109/TASSP.1978.1163113
MATH
Article
Google Scholar
Rao CR (1973) Linear statistical inference and its applications. Wiley, New York
MATH
Book
Google Scholar
Rapp G, Güth K (1988) A low cost high intensity flash device for photolysis experiments. Pflugers Arch Eur J Physiol 411: 200–203. doi:10.1007/BF00582315
Article
Google Scholar
Schnider SM, Kwong RH, Lenz FA, Kwan HC (1989) Detection of feedback in the central nervous system using system identification techniques. Biol Cybern 60: 203–212. doi:10.1007/BF00207288
MATH
Article
Google Scholar
Sension RJ, Repinec ST, Szarka AZ, Hochstrasser RM (1993) Femtosecond laser studies of the cis-stilbene photoisomerization reactions. J Chem Phys 98: 6291–6315. doi:10.1063/1.464824
Article
Google Scholar
Shin S-Y, Rath O, Choo S-M, Fee F, Kolch W, Kolch W, Cho K-H (2009) Positive and negative feedback regulations coordinate the dynamic behavior of the Ras/Raf/MEK/ERK signal transduction pathway. J Cell Sci 122(3): 425–435. doi:10.1242/jcs.036319
Article
Google Scholar
Strogatz SH (2000a) From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillations. Physica D 143: 1–20. doi:10.1016/S0167-2789(00)00094-4
MATH
Article
MathSciNet
Google Scholar
Strogatz SH (2000b) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Perseus Publishing, Reading
Google Scholar
Szallasi Z, Stelling J, Periwal V (2005) System modeling in cell biology from concepts to nuts and bolts. The MIT Press, Cambridge
Google Scholar
Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillation. Springer Ser Synergetics 9: 180–193
Google Scholar
Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 456–1462. doi:10.1126/science.7878464
Article
Google Scholar
Thomas R, Kaufman M (2001) Multistationarity, the basis of cell differentiation and memory. I. structural conditions of multistationarity and other nontrivial behavior. Chaos 11: 170–179. doi:10.1063/1.1350439
MATH
Article
MathSciNet
Google Scholar
Tufillaro NB, Abbot T, Reilly J (1992) An experimental approach to nonlinear dynamics and chaos. Perseus Publishing, Chambridge
MATH
Google Scholar
Vance W, Arkin A, Ross J (2002) Determination of causal connectivities of biomolecular species in reaction networks. Proc Natl Acad Sci USA 99: 5816–5821. doi:10.1073/pnas.022049699
Article
Google Scholar
Westwick DT, Kearney RE (1997) Identification of physiological systems: a robust method for non-parametric impulse response estimation. Med Biol Eng Comput 35: 83–90. doi:10.1007/BF02534135
Article
Google Scholar
Wolkenhauer O, Kitano H, Cho K-H (2003) Systems biology: Looking at opportunities and challenges in applying systems theory to molecular and cell biology. IEEE Contr Syst Mag 23(4): 38–48. doi:10.1109/MCS.2003.1213602
Article
Google Scholar
Wolpert L, Lewis JH (1975) Towards a theory of development. Fed Proc 34: 14–20
Google Scholar