Skip to main content

Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components

Abstract

Feedback circuits are crucial dynamic motifs which occur in many biomolecular regulatory networks. They play a pivotal role in the regulation and control of many important cellular processes such as gene transcription, signal transduction, and metabolism. In this study, we develop a novel computationally efficient method to identify feedback loops embedded in intracellular networks, which uses only time-series experimental data and requires no knowledge of the network structure. In the proposed approach, a non-parametric system identification technique, as well as a spectral factor analysis, is applied to derive a graphical criterion based on non-causal components of the system’s impulse response. The appearance of non-causal components in the impulse response sequences arising from stochastic output perturbations is shown to imply the presence of underlying feedback connections within a linear network. In order to extend the approach to nonlinear networks, we linearize the intracellular networks about an equilibrium point, and then choose the magnitude of the output perturbations sufficiently small so that the resulting time-series responses remain close to the chosen equilibrium point. In this way, the impulse response sequences of the linearized system can be used to determine the presence or absence of feedback loops in the corresponding nonlinear network. The proposed method utilizes the time profile data from intracellular perturbation experiments and only requires the perturbability of output nodes. Most importantly, the method does not require any a priori knowledge of the system structure. For these reasons, the proposed approach is very well suited to identifying feedback loops in large-scale biomolecular networks. The effectiveness of the proposed method is illustrated via two examples: a synthetic network model with a negative feedback loop and a nonlinear caspase function model of apoptosis with a positive feedback loop.

This is a preview of subscription content, access via your institution.

References

  • Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55: 755–784. doi:10.1146/annurev.ph.55.030193.003543

    Article  Google Scholar 

  • Baccala LA, Sameshima K (1999) Direct coherence: a tool for exploring functional interactions among brain structures. Methods for neural ensemble recordings. CRC press LLC, Boca Raton

    Google Scholar 

  • Bernardinelli Y, Haeberli C, Chatton JY (2005) Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution. Cell Calcium 37: 565–572. doi:10.1016/j.ceca.2005.03.001

    Article  Google Scholar 

  • Brandman O, Ferrell JE, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310: 496–498. doi:10.1126/science.1113834

    Article  MathSciNet  Google Scholar 

  • Brown EB, Shear JB, Adams SR, Tsien RY, Webb WW (1999) Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J 76: 489–499. doi:10.1016/S0006-3495(99)77217-6

    Article  Google Scholar 

  • Bullinger E (2005) System analysis of a programmed cell death model. In: Proceedings of the IEEE conference on decision and control. Seville, Spain, pp 7994–7999

  • Caines PE, Chan CW (1975) Feedback between stationary stochastic processes. IEEE Trans AC 20: 498–508

    MATH  MathSciNet  Google Scholar 

  • Cho K-H, Shin S-Y, Lee H-W, Wolkenhauer O (2003) Investigations into the analysis and modeling of the TNFα mediated NF-κB signaling pathway. Genome Res 13(11): 2413–2422. doi:10.1101/gr.1195703

    Article  Google Scholar 

  • Corrie JET, Katayama Y, Reid GP, Anson M, Trentham DR (1992) The development and application of photosensitive caged compounds to aid time-resolved structure determination of macromolecules. Philos Trans R Soc London Ser A 340: 233–243

    Article  Google Scholar 

  • Dayal BS, MacGregor JF (1996) Identification of finite impulse response models: methods and robustness issues. Ind Eng Chem Res 35: 4078–4090. doi:10.1021/ie960180e

    Article  Google Scholar 

  • Dong CY, Cho K-H, Yoon TW (2008) Identification of intra-cellular feedback loops by intermittent step perturbation method. In: Proceedings of the 17th IFAC world congress (IFAC2008), Seoul, Korea, pp 289–294

  • Doré S, Kearney RE, De Guise JA (1997) Experimental correlation-based identification of X-ray CT point spread function. Part 1: method and experimental results. Med Biol Eng Comput 35: 0118–0140

    Google Scholar 

  • Draper DR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Durbin J (1960) The fitting of time series models. Rev Int Stat Inst 23: 233–244. doi:10.2307/1401322

    Article  Google Scholar 

  • Eisen H, Brachet P, da Silva PL, Jacob F (1967) Regulation of repressor inhibition in lambda. Proc Natl Acad Sci USA 66: 855–862. doi:10.1073/pnas.66.3.855

    Article  Google Scholar 

  • Eissing T, Allgower F, Bullinger E (2005) Robustness properties of apoptosis models with respect to parameter variations and intrinsic noise. IEE Proc Sys Biol 152: 221–228. doi:10.1049/ip-syb:20050046

    Article  Google Scholar 

  • Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, Scheurich P (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 279: 36892–36897. doi:10.1074/jbc.M404893200

    Article  Google Scholar 

  • Fang CZ, Xiao DY (1988) System identification. Tsinghua University Press, Beijing

    Google Scholar 

  • Gauss KF (1963) Theoria motus corporum celestium. english translation: theory of the motion of the heavenly bodies. Dover, New York

    Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185: 1–17. doi:10.1016/0003-2670(86)80028-9

    Article  Google Scholar 

  • Giovannardi S, Lando L, Peres A (1998) Flash photolysis of caged compounds: casting light on physiological processes. News Physiol Sci 13: 251–255

    Google Scholar 

  • Glendinning P (1994) Stability, instability and chaos: an introduction to the theory of nonlinear differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Godfrey KR (1980) Correlation methods. Automatica 16: 527–534. doi:10.1016/0005-1098(80)90076-X

    MATH  Article  Google Scholar 

  • Golub G, van Loan C (1996) Matrix computations. The Johns Hopkins University Press, London

    MATH  Google Scholar 

  • Gouze J (1998) Positive and negative circuits in dynamical systems. J Biol Syst 6: 11–15. doi:10.1142/S0218339098000054

    MATH  Article  Google Scholar 

  • Granger CWJ (1962) Economic processes involving feedback. Princeton University, New Jersey

    Google Scholar 

  • Guldberg CM, Waage P (1879) Über die chemische Affinität. J Prakt Chem 19: 69. doi:10.1002/prac.18790190111

    Article  Google Scholar 

  • Haass C (1999) Apoptosis: dead end for neurodegeneration. Nature 399: 204–207. doi:10.1038/20314

    Article  Google Scholar 

  • Hoerl AE, Kennard RW (1970a) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42: 80–86. doi:10.2307/1271436

    Article  Google Scholar 

  • Hoerl AE, Kennard RW (1970b) Ridge regression: applications to nonorthogonal problems. Technometrics 12: 69–82. doi:10.2307/1267352

    MATH  Article  Google Scholar 

  • Hull TE, Dobell AR (1962) Random number generater. Soc Ind Appl Math Rev 4: 230–254

    MATH  MathSciNet  Google Scholar 

  • Hunter IW, Kearney RE (1983) Two-sided linear filter identification. Med Biol Eng Comput 21: 203–209. doi:10.1007/BF02441539

    Article  Google Scholar 

  • Kim D, Kwon Y-K, Cho K-H (2007a) Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. Bioessays 29(1): 85–90. doi:10.1002/bies.20511

    Article  Google Scholar 

  • Kim D, Rath O, Kolch W, Cho K-H (2007b) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene 26(31): 4571–4579. doi:10.1038/sj.onc.1210230

    Article  Google Scholar 

  • Kim J-R, Yoon Y, Cho K-H (2008) Coupled feedback loops form dynamic motifs of cellular networks. Biophys J 94(2): 359–365. doi:10.1529/biophysj.107.105106

    Article  Google Scholar 

  • Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice: concepts, implementation and application. Wiley-VCh Verlag GmbH & Co. KGaA, Berlin

    Google Scholar 

  • Kwon Y-K, Cho K-H (2008a) Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24(7): 987–994. doi:10.1093/bioinformatics/btn060

    Article  Google Scholar 

  • Kwon Y-K, Cho K-H (2008b) Coherent coupling of feedback loops: A design principle of cell signaling networks. Bioinformatics 24(17): 1926–1932. doi:10.1093/bioinformatics/btn337

    Article  Google Scholar 

  • Laub MT, Loomis WF (1998) A molecular network that produces spontaneous oscillations in excitable cells of dictyostelium. Mol Biol Cell 9: 3521–3532

    Google Scholar 

  • Levinson N (1947) The Wiener RMS error criterion in filter design and prediction. J Math Phys 25: 261–278

    MathSciNet  Google Scholar 

  • Ljung L (1987) System identification: theory for the user. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • Ludwig R, Ehrhardt A (1995) Turn-key-ready wavelength-, repetition rate-and pulse width-tunable femtosecond hybrid modelocked semiconductor laser. Electron Lett 31: 1165–1167. doi:10.1049/el:19950796

    Article  Google Scholar 

  • Maeda M, Lu S, Shaulsky G, Miyazaki Y, Kuwayama H, Tanaka Y, Kuspa A, Loomis WF (2004) Periodic signaling controlled by an oscillatory circuit that includes protein kinase ERK2 and PKA. Science 304: 875–878. doi:10.1126/science.1094647

    Article  Google Scholar 

  • McClung FJ, Hellwarth RW (2004) Giant optical pulsations from ruby. J Appl Phys 33: 828–829. doi:10.1063/1.1777174

    Article  Google Scholar 

  • Mialocq JC, Amouyal E, Bernas A, Grand D (1982) Picosecond laser photolysis of aqueous indole and tryptophan. J Phys Chem 86: 3173–3177. doi:10.1021/j100213a022

    Article  Google Scholar 

  • Miao B, Zane R, Maksimovic D (2005) System identification of power converters with digital control through cross-correlation methods. IEEE Trans. Power Electron 20(5): 1093–1099. doi:10.1109/TPEL.2005.854035

    Article  Google Scholar 

  • Miyasaka H, Nagata T, Kiri M, Mataga N (1992) Femtosecond-picosecond laser photolysis studies on reduction process of excited benzophenone with N-methyldiphenylamine in acetonitrile solution. J Phys Chem 96: 8060–8065. doi:10.1021/j100199a042

    Article  Google Scholar 

  • Nerbonne JM (1986) Design and application of photolabile intracellular probes. Soc Gen Physiol Ser 40: 417–445

    Google Scholar 

  • Okamura T, Sancar A, Heelis PF, Begley TP, Hirata Y, Mataga N (1991) Picosecond laser photolysis studies on the photorepair of pyrimidine dimers by DNA photolyase. 1. Laser photolysis of photolyase-2-deoxyuridine dinucleotide photodimer complex. J Am Chem Soc 113: 3143–3145. doi:10.1021/ja00008a050

    Article  Google Scholar 

  • Oppenheim AV, Willsky AS, Nawab SH (1997) Signals & systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Porta A, Furlan R, Rimoldi O, Pagani M, Malliani A, van de Borne P (2002) Quantifying the strength of the linear causal coupling in closed loop interacting cardiovascular variability signals. Biol Cybern 86: 241–251. doi:10.1007/s00422-001-0292-z

    MATH  Article  Google Scholar 

  • Rabiner L, Crochiere R, Allen J (1978) FIR system modeling and identification in the presence of noise and with band-limited inputs, acoustics, speech, and signal processing. IEEE Trans Signal Process 26: 319–333. doi:10.1109/TASSP.1978.1163113

    MATH  Article  Google Scholar 

  • Rao CR (1973) Linear statistical inference and its applications. Wiley, New York

    MATH  Book  Google Scholar 

  • Rapp G, Güth K (1988) A low cost high intensity flash device for photolysis experiments. Pflugers Arch Eur J Physiol 411: 200–203. doi:10.1007/BF00582315

    Article  Google Scholar 

  • Schnider SM, Kwong RH, Lenz FA, Kwan HC (1989) Detection of feedback in the central nervous system using system identification techniques. Biol Cybern 60: 203–212. doi:10.1007/BF00207288

    MATH  Article  Google Scholar 

  • Sension RJ, Repinec ST, Szarka AZ, Hochstrasser RM (1993) Femtosecond laser studies of the cis-stilbene photoisomerization reactions. J Chem Phys 98: 6291–6315. doi:10.1063/1.464824

    Article  Google Scholar 

  • Shin S-Y, Rath O, Choo S-M, Fee F, Kolch W, Kolch W, Cho K-H (2009) Positive and negative feedback regulations coordinate the dynamic behavior of the Ras/Raf/MEK/ERK signal transduction pathway. J Cell Sci 122(3): 425–435. doi:10.1242/jcs.036319

    Article  Google Scholar 

  • Strogatz SH (2000a) From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillations. Physica D 143: 1–20. doi:10.1016/S0167-2789(00)00094-4

    MATH  Article  MathSciNet  Google Scholar 

  • Strogatz SH (2000b) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Perseus Publishing, Reading

    Google Scholar 

  • Szallasi Z, Stelling J, Periwal V (2005) System modeling in cell biology from concepts to nuts and bolts. The MIT Press, Cambridge

    Google Scholar 

  • Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillation. Springer Ser Synergetics 9: 180–193

    Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 456–1462. doi:10.1126/science.7878464

    Article  Google Scholar 

  • Thomas R, Kaufman M (2001) Multistationarity, the basis of cell differentiation and memory. I. structural conditions of multistationarity and other nontrivial behavior. Chaos 11: 170–179. doi:10.1063/1.1350439

    MATH  Article  MathSciNet  Google Scholar 

  • Tufillaro NB, Abbot T, Reilly J (1992) An experimental approach to nonlinear dynamics and chaos. Perseus Publishing, Chambridge

    MATH  Google Scholar 

  • Vance W, Arkin A, Ross J (2002) Determination of causal connectivities of biomolecular species in reaction networks. Proc Natl Acad Sci USA 99: 5816–5821. doi:10.1073/pnas.022049699

    Article  Google Scholar 

  • Westwick DT, Kearney RE (1997) Identification of physiological systems: a robust method for non-parametric impulse response estimation. Med Biol Eng Comput 35: 83–90. doi:10.1007/BF02534135

    Article  Google Scholar 

  • Wolkenhauer O, Kitano H, Cho K-H (2003) Systems biology: Looking at opportunities and challenges in applying systems theory to molecular and cell biology. IEEE Contr Syst Mag 23(4): 38–48. doi:10.1109/MCS.2003.1213602

    Article  Google Scholar 

  • Wolpert L, Lewis JH (1975) Towards a theory of development. Fed Proc 34: 14–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Woong Yoon or Kwang-Hyun Cho.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 118 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, CY., Yoon, TW., Bates, D.G. et al. Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components. J. Math. Biol. 60, 285 (2010). https://doi.org/10.1007/s00285-009-0263-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-009-0263-x

Keywords

  • Biomolecular regulatory networks
  • Feedback loops
  • Nonparametric identification
  • Spectral factor analysis
  • Signaling pathways
  • Systems biology

Mathematics Subject Classification (2000)

  • 92-08
  • 92B05
  • 93B30
  • 93E12
  • 93E10
  • 93E24