Skip to main content

How T-cells use large deviations to recognize foreign antigens


A stochastic model for the activation of T-cells is analysed. T-cells are part of the immune system and recognize foreign antigens against a background of the body’s own molecules. The model under consideration is a slight generalization of a model introduced by Van den Berg et al. (J Theor Biol 209:465–486, 2001), and is capable of explaining how this recognition works on the basis of rare stochastic events. With the help of a refined large deviation theorem and numerical evaluation it is shown that, for a wide range of parameters, T-cells can distinguish reliably between foreign antigens and self-antigens.

This is a preview of subscription content, access via your institution.


  1. Arstila T.P., Casrouge A., Baron V., Even J., Kanellopoulos J., Kourilsky P.: A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961 (1999)

    Article  Google Scholar 

  2. Chaganty N.R., Sethuraman J.: Strong large deviation and local limit theorems. Ann. Probab. 21, 1671–1690 (1993)

    MATH  Article  MathSciNet  Google Scholar 

  3. Coombs D., Kalergis A.M., Nathenson S.G., Wofsy C., Goldstein B.: Activated TCRs remain marked for internalization after dissociation from pMHC. Nat. Immunol. 3, 926–931 (2002)

    Article  Google Scholar 

  4. den Hollander, F.: Large Deviations. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  5. Dembo A., Zeitouni O.: Large Deviations: Techniques and Applications, 2nd edn. Springer, New York (2004)

    Google Scholar 

  6. Ethier S.N., Kurtz T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  7. Feller W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  8. Hunt D.F., Henderson R.A., Shabanowitz J., Sakaguchi K., Michel H., Sevilir N., Cox A.L., Appella E., Engelhard V.H.: Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263 (1992)

    Article  Google Scholar 

  9. Janeway C.A. Jr, Travers P., Walport M., Shlomchik M.J.: Immunobiology: the Immune System in Health and Disease, 6th edn. Churchill Livingstone, Edinburgh (2005)

    Google Scholar 

  10. Jiang H., Chess L.: Regulation of immune responses by T-cells. N Engl J Med 354, 1166–1176 (2006)

    Article  Google Scholar 

  11. Lancet D., Sadovsky E., Seidemann E.: Probability model for molecular recognition in biological receptor repertoires: significance to the olfactory system. Proc. Natl. Acad. Sci. USA 90, 3715–3719 (1993)

    Article  Google Scholar 

  12. Mason D.: A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998)

    Article  Google Scholar 

  13. Matsui K., Boniface J.J., Steffner P., Reay P.A., Davis M.M.: Kinetics of T-cell receptor binding to peptide/I–Ek complexes: correlation of the dissociation rate with T-cell responsiveness. Proc. Natl. Acad. Sci. USA 91, 12862–12866 (1994)

    Article  Google Scholar 

  14. McKeithan T.W.: Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. USA 92, 5042–5046 (1995)

    Article  Google Scholar 

  15. Rothenberg E.V.: How T-cells count. Science 273, 78–79 (1996)

    Article  Google Scholar 

  16. Valitutti S., Müller S., Cella M., Padovan E., Lanzavecchia A.: Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995)

    Article  Google Scholar 

  17. Valitutti S., Lanzavecchia A.: Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol. Today 18, 299–304 (1997)

    Article  Google Scholar 

  18. van den Berg H.A., Rand D.A., Burroughs N.J.: A reliable and safe T cell repertoire based on low-affinity T cell receptors. J. Theor. Biol. 209, 465–486 (2001)

    Article  Google Scholar 

  19. van den Berg H.A., Burroughs N.J., Rand D.A.: Quantifying the strength of ligand antagonism in TCR triggering. Bull. Math. Biol. 64, 781–808 (2002)

    Article  Google Scholar 

  20. van den Berg H.A., Molina-París C.: Thymic presentation of autoantigens and the efficiency of negative selection. J. Theor. Med 5, 1–22 (2003)

    MATH  Article  Google Scholar 

  21. van den Berg H.A., Rand D.A.: Antigen presentation on MHC molecules as a diversity filter that enhances immune efficacy. J. Theor. Biol. 224, 249–267 (2003)

    Article  Google Scholar 

  22. van den Berg H.A., Rand D.A.: Dynamics of T cell activation threshold tuning. J. Theor. Biol. 228, 397–416 (2004)

    Article  Google Scholar 

  23. van den Berg H.A., Rand D.A.: Foreignness as a matter of degree: the relative immunogenicity of peptide/MHC ligands. J. Theor. Biol. 231, 535–548 (2004)

    Article  Google Scholar 

  24. Viola A., Lanzavecchia A.: T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996)

    Article  Google Scholar 

  25. Wolfram S.: The Mathematica® Book, 5th edn. Wolfram Media, Champaign (2003)

    Google Scholar 

  26. Wu L.C., Tuot D.S., Lyons D.S., Garcia K.C., Davis M.M.: Two-step binding mechanism for T-cell receptor recognition of peptide-MHC. Nature 418, 552–556 (2002)

    Article  Google Scholar 

  27. Zint, N.: Ein Karikaturmodell für die T-Zell-Dynamik. Diploma Thesis, Institut für Mathematik und Informatik, Universität Greifswald (2005)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ellen Baake.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zint, N., Baake, E. & den Hollander, F. How T-cells use large deviations to recognize foreign antigens. J. Math. Biol. 57, 841–861 (2008).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Immune system
  • T-cells
  • Antigen-presenting cells
  • Foreign versus self
  • Kinetics of stimulation
  • Large deviations
  • Activation curves

Mathematics Subject Classification (2000)

  • 60F10
  • 92C37