Skip to main content
Log in

Modeling cell interactions under flow

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this review, we summarize the current state of understanding of the processes by which leukocytes, and other cells, such as tumor cells interact with the endothelium under various blood flow conditions. It is shown that the interactions are influenced by cell–cell adhesion properties, shear stresses due to the flow field and can also be modified by the cells microrheological properties. Different adhesion proteins are known to be involved leading to particular mechanisms by which interactions take place during inflammation or metastasis. Cell rolling, spreading, migration are discussed, as well as the effect of flow conditions on these mechanisms, including microfluidic effects. Several mathematical models proposed in recent years capturing the essential features of such interaction mechanisms are reviewed. Finally, we present a recent model in which the adhesion is given by a kinetics theory based model and the cell itself is modeled as a viscoelastic drop. Qualitative agreement is found between the predictions of this model and in vitro experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A-Hassan E., Heinz W.F., Antonik M.D., D’Costa N.P., Nageswaran S., Schoenenberger C.A. and Hoh J.H. (1998). Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74(3): 1564–1578

    Google Scholar 

  2. Alberts B., Bray D., Lewis J., Raff M., Roberts K. and Watson. J.D. (1994). Molecular biology of the cell, 3rd edn. Garland Science, Oxford

    Google Scholar 

  3. Alon R., Chen S., Puri K.D., Finger E.B. and Springer T.A. (1997). The kinetics of l-selectin tethers and the mechanics of selectin-mediated rolling. J. Cell Biol. 138: 1169–1180

    Google Scholar 

  4. Alon R., Hammer D.A. and Springer T.A. (1995). Lifetime of the p-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374(6522): 539–542

    Google Scholar 

  5. Atherton A. and Born G.V. (1973). Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J. Physiol. 233(1): 157–165

    Google Scholar 

  6. Barthès-Biesel D. and Rallison J.M. (1981). The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid mech. 113: 251–267

    Google Scholar 

  7. Bausch A.R. and Kroy K. (2006). A bottom-up approach to cell mechanics. Nat. Phys. 2: 231–238

    Google Scholar 

  8. Bell G.I. (1978). Models for the specific adhesion of cells to cells. Science 200(4342): 618–627

    Google Scholar 

  9. Bell G.I., Dembo M. and Bongrand P. (1984). Cell adhesion. competition between nonspecific repulsion and specific bonding. Biophys. J. 45(6): 1051–1064

    Google Scholar 

  10. Benoit M., Gabriel D., Gerisch G. and Gaub H.E. (2000). Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2(6): 313–317

    Google Scholar 

  11. Bershadsky A.D., Tint I.S., Neyfakh A.A. and Vasiliev J.M. (1985). Focal contacts of normal and rsv-transformed quail cells. hypothesis of the transformation-induced deficient maturation of focal contacts. Exp. Cell Res. 158(2): 433–444

    Google Scholar 

  12. Biben T. and Misbah C. (2003). Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67(3): 031, 908

    Google Scholar 

  13. Binnig G., Quate C.F. and Gerber C. (1986). Atomic force microscope. Phys. Rev. Lett. 56(9): 930–933

    Google Scholar 

  14. Bohnet S., Ananthakrishnan R., Mogilner A., Meister J.J. and Verkhovsky A.B. (2006). Weak force stalls protrusion at the leading edge of the lamellipodium. Biophys. J. 90: 1810–1820

    Google Scholar 

  15. Brenner H. (1961). The slow viscous motion of a sphere through a fluid toward a plane surface. Chem. Eng. Sci. 16: 242–251

    Google Scholar 

  16. Canetta E., Duperray A., Leyrat A. and Verdier C. (2005). Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions. Biorheology 42(5): 321–333

    Google Scholar 

  17. Canetta E., Leyrat A. and Verdier C. (2003). A physical model for studying adhesion between a living cell and a spherical functionalized substrate. Math. Comp. Model. 37: 1121–1129

    MATH  Google Scholar 

  18. Cantat I. and Misbah C. (1999). Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83(4): 880–883

    Google Scholar 

  19. Cao J., Donell B., Deaver D.R., Lawrence M.B. and Dong C. (1998). In vitro side-view imaging technique and analysis of human t-leukemic cell adhesion to icam-1 in shear flow. Microvasc. Res. 55: 124–137

    Google Scholar 

  20. Caputo K.E., Lee D., King M.R. and Hammer D.A. (2007). Adhesive dynamics simulations of the shear threshold effect for leukocytes. Biophys. J. 92: 787–797

    Google Scholar 

  21. Chang K.C. and Hammer D.A. (2000). Adhesive dynamics simulations of sialyl-lewis(x)/e-selectin-mediated rolling in a cell-free system. Biophys. J. 79(4): 1891–1902

    Google Scholar 

  22. Chang K.C., Tees D.F.J. and Hammer D.A. (2000). The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. USA 97(21): 11,262–11,267

    Google Scholar 

  23. Chen S. and Springer T.A. (1999). An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 144(1): 185–200

    Google Scholar 

  24. Choquet D., Felsenfeld D.P. and Sheetz M.P. (1997). Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1): 39–48

    Google Scholar 

  25. Chotard-Ghodsnia R., Drochon A., Duperray A., Leyrat A. and Verdier C. (2003). Static and dynamic interactions between circulating cells and the endothelium in cancer. In: Preziosi, L. (eds) Cancer Modelling and Simulation, Chap. 9, pp 243–267. CRC Press, Boca Raton, FL

    Google Scholar 

  26. Chotard-Ghodsnia R., Drochon A. and Grebe R. (2002). A new flow chamber for the study of shear stress and transmural pressure upon cells adhering to a porous biomaterial. J. Biomech. Eng. 124: 258–261

    Google Scholar 

  27. Chotard-Ghodsnia R., Haddad O., Leyrat A., Drochon A., Verdier C. and Duperray A. (2007). Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J. Biomech. 40(2): 335–344

    Google Scholar 

  28. Coughlin M.F. and Schmid-Schönbein G.W. (2004). Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys. J. 87: 2035–2042

    Google Scholar 

  29. Crocker J.C., Valentine M.T., Weeks E.R., Gisler T., Kaplan P.D., Yodh A.G. and Weitz D.A. (2000). Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85(4): 888–891

    Google Scholar 

  30. Décavé E., Garrivier D., Bréchet Y., Fourcade B. and Brückert F. (2002). Shear flow-induced detachment kinetics of dictyostelium discoideum cells from solid substrate. Biophys. J. 82(5): 2383–2395

    Google Scholar 

  31. Dembo M., Torney D.C., Saxman K. and Hammer D. (1988). The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234: 55–83

    Google Scholar 

  32. Dong C., Cao J., Struble E.J. and Lipowski H.H. (1999). Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann. Biomed. Eng. 27: 298–312

    Google Scholar 

  33. Drury J.L. and Dembo M. (1999). Hydrodynamics of micropipette aspiration. Biophys. J. 76(1): 110–128

    Google Scholar 

  34. Endlich N. and Endlich K. (2006). Stretch, tension and adhesion—adaptive mechanisms of the actin cytoskeleton in podocytes. Eur. J. Cell Biol. 85(3–4): 229–234

    Google Scholar 

  35. Euteneuer U. and Schliwa M. (1984). Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310(5972): 58–61

    Google Scholar 

  36. Evans E., Leung A., Heinrich V. and Zhu C. (2004). Mechanical switching and coupling between two dissociation pathways in a p-selectin adhesion bond. Proc. Natl. Acad. Sci. USA 101(31): 11,281–11,286

    Google Scholar 

  37. Evans E. and Ritchie K. (1997). Dynamic strength of molecular adhesion bonds. Biophys. J. 72(4): 1541–1555

    Google Scholar 

  38. Evans E.A. (1985). Detailed mechanics of membrane-membrane adhesion and separation. i. continuum of molecular cross-bridges. Biophys. J. 48(1): 175–183

    Google Scholar 

  39. Evans E.A. (2001). Probing the relation between force-lifetime-and chemistry in single molecular bonds. Ann. Rev. Biophys. Biomol. Struct. 30: 105–128

    Google Scholar 

  40. Foty R.A. and Steinberg M.S. (2005). The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278(1): 255–263

    Google Scholar 

  41. Friedl P. and Bröcker E.B. (2000). The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol. Life Sci. 57(1): 41–64

    Google Scholar 

  42. Gardiner C.W. (1985). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Berlin

    Google Scholar 

  43. Glowinski R., Pan T.W., Hesla T.I. and Joseph D.D. (1998). A distributed lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flows 25: 201–233

    Google Scholar 

  44. Goldman A.J., Cox R.G. and Brenner H. (1967). Slow viscous motion of a sphere parallel to a plane wall. i. motion through a quiescent fluid. Chem. Eng. Sci. 22: 637–652

    Google Scholar 

  45. Goldman A.J., Cox R.G. and Brenner H. (1967). Slow viscous motion of a sphere parallel to a plane wall: Ii. couette flow. Chem. Eng. Sci. 22: 653–659

    Google Scholar 

  46. Hammer D.A. and Apte S.M. (1992). Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 63(1): 35–57

    Google Scholar 

  47. Hammer D.A. and Lauffenburger D.A. (1987). A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys. J. 52(3): 475–487

    Google Scholar 

  48. He X. and Dembo M. (1997). On the mechanics of the first cleavage division of the sea urchin egg. Exp. Cell Res. 233(2): 252–273

    Google Scholar 

  49. Hénon S., Lenormand G., Richert A. and Gallet F. (1999). A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76(2): 1145–1151

    Google Scholar 

  50. Herant M., Heinrich V. and Dembo M. (2005). Mechanics of neutrophil phagocytosis: behavior of the cortical tension. J. Cell Sci. 118(9): 1789–1797

    Google Scholar 

  51. Hochmuth R.M. (2000). Micropipette aspiration of living cells. J. Biomech. 33(1): 15–22

    Google Scholar 

  52. Hussain M.A., Merchant S.N., Mombasawala L.S. and Puniyani R.R. (2004). A decrease in effective diameter of rat mesenteric venules due to leukocyte margination after a bolus injection of pentoxifylline-digital image analysis of an intravital microscopic observation. Microvasc. Res. 67(3): 237–244

    Google Scholar 

  53. Iguchi K., Oh G., Ookawa K., Yanagi K., Sakai M., Yamamoto T., Ishikawa S. and Onizuka M. (2007). In vivo observation of pulmonary micrometastasis of colon cancer in normal rats. Microvasc. Res. 73(3): 206–213

    Google Scholar 

  54. Israelachvili J.N. and Tabor D. (1972). The measurement of van der waals dispersion forces in the range 1.5 to 130 nm. Proc. Roy. Soc. Lond. A 331(1584): 19–38

    Google Scholar 

  55. Jadhav S., Eggleton C.D. and Konstantopoulos K. (2005). A 3-d computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys. J. 88: 96–104

    Google Scholar 

  56. Jin Q., Verdier C., Singh P., Aubry N., Chotard-Ghodsnia R. and Duperray A. (2007). Migration and deformation of leukocytes in pressure driven flows. Mech. Res. Commun. 34: 411–422

    MathSciNet  Google Scholar 

  57. Johnson-Léger C., Aurrand-Lions M. and Imhof B.A. (2000). The parting of the endothelium: miracle, or simply a junctional affair?J. Cell Sci. 113(6): 921–933

    Google Scholar 

  58. Jones D.A., Abbassi O., McIntire L.V., McEver R.P. and Smith C.W. (1993). P-selectin mediates neutrophil rolling on histamine-stimulated endothelial cells. Biophys. J. 65(4): 1560–1569

    Google Scholar 

  59. Kadaksham J., Singh P. and Aubry N. (2004). Dynamics of pressure driven flows of electrorheological suspensions subjected to spatially non-uniform electric fields. J. Fluids Eng. 126: 170–179

    Google Scholar 

  60. Kan H.C., Udaykumar H.S., Shyy W. and Tran-Son-Tay R. (1998). Hydrodynamics of a compound drop with application to leukocyte modeling. Phys. Fluids 10(4): 760–774

    Google Scholar 

  61. Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A.M., Alessi M.C., Kaplanski S. and Bongrand P. (1993). Granulocyte-endothelium initial adhesion. analysis of transient binding events mediated by e-selectin in a laminar shear flow. Biophys. J. 64(6): 1922–1933

    Google Scholar 

  62. Khismatullin D.B. and Truskey G.A. (2004). A 3d numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvas. Res. 68: 188–202

    Google Scholar 

  63. Khismatullin D.B. and Truskey G.A. (2005). Three-dimensional numerical simulation of a receptor-mediated leukocyte adhesion to surface: effects of cell deformability and viscoelasticity. Phys. Fluids 17(3): 53–73

    Google Scholar 

  64. King M.R. and Hammer D.A. (2001). Multiparticle adhesive dynamics: hydrodynamic recruitment of rolling leukocytes. Proc. Natl. Acad. Sci. USA 98(26): 14,919–14,924

    Google Scholar 

  65. Kramers H.A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7: 284–304

    MATH  MathSciNet  Google Scholar 

  66. Lac E., Morel A. and Barthès-Biesel D. (2007). Hydrodynamic interaction between two identical capsules in simple shear flow. J. Fluid Mech. 573: 149–169

    MATH  MathSciNet  Google Scholar 

  67. Laurent V.M., Kasas S., Yersin A., Schäffer T.E., Catsicas S., Dietler G., Verkhovsky A.B. and Meister J.J. (2005). Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy. Biophys. J. 89(1): 667–675

    Google Scholar 

  68. Lawrence M.B. and Springer T.A. (1991). Leukocytes roll on a selectin at physiological flow rates: distinction from and prerequisite for adhesion through lntegrins. Cell 65: 859–873

    Google Scholar 

  69. Leckband D. (2000). Measuring the forces that control protein interactions. Ann. Rev. Biophys. Biomol. Struct. 29: 1–26

    Google Scholar 

  70. Lekka M., Laidler P., Gil D., Lekki J., Stachura Z. and Hrynkiewicz A.Z. (1999). Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 28(4): 312–316

    Google Scholar 

  71. Leyrat A., Duperray A. and Verdier C. (2003). Adhesion mechanisms in cancer metastasis. In: Preziosi, L. (eds) Cancer Modelling and Simulation, Chap 8, pp 221–242. CRC Press, Boca Raton, FL

    Google Scholar 

  72. Lu H., Koo L.Y., Wang W.M., Lauffenburger D.A., Griffith L.G. and Jensen K.F. (2004). Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76(18): 5257–5264

    Google Scholar 

  73. Mader M.A., Vitkova V., Abkarian M., Viallat A. and Podgorski T. (2006). Dynamics of viscous vesicles in shear flow. Eur. Phys. J. E. Soft. Matter 19(4): 389–397

    Google Scholar 

  74. Makino A., Glogauer M., Bokoch G.M., Chien S. and Schmid-Schönbein G.W. (2005). Control of neutrophil pseudopods by fluid shear: role of rho family gtpases. Am. J. Physiol. Cell Physiol. 288: 863–871

    Google Scholar 

  75. Malawista S.E. and Chevance A.D.B. (1982). The cytokineplast: purified, stable and functional motile machinery from human blood polymorphonuclear leukocytes. J. Cell Biol. 95(3): 960–973

    Google Scholar 

  76. Marshall B.T., Long M., Piper J.W., Yago T., McEver R.P. and Zhu C. (2003). Direct observation of catch bonds involving cell-adhesion molecules. Nature 423(6936): 190–193

    Google Scholar 

  77. Mason T.G. and Weitz D.A. (1995). Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74(7): 1250–1253

    Google Scholar 

  78. Merkel R., Nassoy P., Leung A., Ritchie K. and Evans E. (1999). Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397(6714): 50–53

    Google Scholar 

  79. Milln J., Hewlett L., Glyn M., Toomre D., Clark P. and Ridley A.J. (2006). Lymphocyte transcellular migration occurs through recruitment of endothelial icam-1 to caveola- and f-actin-rich domains. Nat. Cell Biol. 8(2): 113–123

    Google Scholar 

  80. Moazzam F., DeLano F.A., Zweifach B.W. and Schmid-Schönbein G.W. (1997). The leukocyte response to fluid stress. Proc. Natl. Acad. Sci. USA 94(10): 5338–5343

    Google Scholar 

  81. Moll R., Mitze M., Frixen U.H. and Birchmeier W. (1993). Differential loss of e-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am. J. Pathol. 143(6): 1731–1742

    Google Scholar 

  82. N’Dri N.A., Shyy W. and Tran-Son-Tay R. (2003). Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys. J. 85(4): 2273–2286

    Google Scholar 

  83. Pearson M.J. and Lipowsky H.H. (2000). Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 279(4): H1460–H1471

    Google Scholar 

  84. Pierres A., Benoliel A.M. and Bongrand P. (1999). Adhesion molecules and cancer. Rev. Med. Interne. 20(12): 1099–1113

    Google Scholar 

  85. Pillapakkam S.B. and Singh P. (2001). A level-set method for computing solutions to viscoelastic two-phase flow. J. Comput. Phys. 174: 552–578

    MATH  Google Scholar 

  86. Piper J.W., Swerlick R.A. and Zhu C. (1998). Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys. J. 74(1): 492–513

    Google Scholar 

  87. Ramachandran V., Nollert M.U., Qiu H., Liu W.J., Cummings R.D., Zhu C. and McEver R.P. (1999). Tyrosine replacement in p-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with p- and l-selectin. Proc. Natl. Acad. Sci. USA 96(24): 13,771–13,776

    Google Scholar 

  88. Rosenbluth M.J., Lam W.A. and Fletcher D.A. (2006). Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys. J. 90(8): 2994–3003

    Google Scholar 

  89. Schmid-Schönbein H. and Wells R. (1969). Fluid drop-like transition of erythrocytes under shear. Science 165: 288–291

    Google Scholar 

  90. Seifert U. and Lipowski R. (1990). Adhesion of vesicles. Phys. Rev. A 42(8): 4768–4771

    Google Scholar 

  91. Shyy W., Francois M., Udaykumar H.S., Ndri N. and Tran-Son-Tay R. (2001). Moving boundaries in micro-scale biofluid dynamics. Appl. Mech. Rev. 54(5): 405–453

    Google Scholar 

  92. Singh P. and Joseph D.D. (2005). Fluid dynamics of floating particles. J. Fluid Mech. 530: 31–80

    MATH  MathSciNet  Google Scholar 

  93. Singh P., Joseph D.D., Hesla T.I., Glowinski R. and Pan T.W. (2000). Direct numerical simulation of viscoelastic particulate flows. J. Non-Newtonian Fluid Mech. 91: 165–188

    MATH  Google Scholar 

  94. Singh P. and Leal L.G. (1993). Finite element simulation of the start-up problem for a viscoelastic problem in an eccentric cylinder geometry using third-order upwind scheme. Theor. Comput. Fluid Dyn. 5: 107–137

    MATH  Google Scholar 

  95. Springer T.A. (1990). Adhesion receptors of the immune system. Nature 346(6283): 425–434

    MathSciNet  Google Scholar 

  96. Springer T.A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2): 301–314

    MathSciNet  Google Scholar 

  97. Sukumaran S. and Seifert U. (2001). Influence of shear flow on vesicles near a wall: A numerical study. Phys. Rev. E 64(1): 011, 916

    Google Scholar 

  98. Tran-Son-Tay R., Needham D., Yeung A. and Hochmuth R.M. (1991). Time-dependent recovery of passive neutrophils after large deformation. Biophys. J. 60(4): 856–866

    Google Scholar 

  99. Tsai M.A., Frank R.S. and Waugh R.E. (1993). Passive mechanical behavior of human neutrophils: power-law fluid. Biophys. J. 65(5): 2078–2088

    Google Scholar 

  100. Udaykumar H.S., Kan H.C., Shyy W. and Tran-Son-Tay R. (1997). Multiphase dynamics in arbitrary geometries on fixed cartesian grids. J. Comput. Phys. 137: 366–405

    MATH  MathSciNet  Google Scholar 

  101. Verdier C. (2003). Review. rheological properties of living materials: From cells to tissues. J. Theor. Med. 5(2): 67–91

    MATH  Google Scholar 

  102. Vestweber D. (2007). Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol. Rev. 218: 178–196

    Google Scholar 

  103. Yeung A. and Evans E. (1989). Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56(1): 139–149

    Google Scholar 

  104. Zhang X. and Moy V.T. (2003). Cooperative adhesion of ligand-receptor bonds. Biophys. Chem. 104(1): 271–278

    Google Scholar 

  105. Zhao Y., Chien S. and Skalak R. (1995). A stochastic model of leukocyte rolling. Biophys. J. 69(4): 1309–1320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Verdier.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

avi file: 237 MB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdier, C., Couzon, C., Duperray, A. et al. Modeling cell interactions under flow. J. Math. Biol. 58, 235–259 (2009). https://doi.org/10.1007/s00285-008-0164-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0164-4

Keywords

Mathematics Subject Classification (2000)

Navigation