Skip to main content
Log in

Stable long-period cycling and complex dynamics in a single-locus fertility model with genomic imprinting

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Although long-period population size cycles and chaotic fluctuations in abundance are common in ecological models, such dynamics are uncommon in simple population-genetic models where convergence to a fixed equilibrium is most typical. When genotype-frequency cycling does occur, it is most often due to frequency-dependent selection that results from individual or species interactions. In this paper, we demonstrate that fertility selection and genomic imprinting are sufficient to generate a Hopf bifurcation and complex genotype-frequency cycling in a single-locus population-genetic model. Previous studies have shown that on its own, fertility selection can yield stable two-cycles but not long-period cycling characteristic of a Hopf bifurcation. Genomic imprinting, a molecular mechanism by which the expression of an allele depends on the sex of the donating parent, allows fitness matrices to be nonsymmetric, and this additional flexibility is crucial to the complex dynamics we observe in this fertility selection model. Additionally, we find under certain conditions that stable oscillations and a stable equilibrium point can coexist. These dynamics are characteristic of a Chenciner (generalized Hopf) bifurcation. We believe this model to be the simplest population-genetic model with such dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin E. (1982). Cycling in simple genetic systems. J. Math. Biol. 13(3): 305–324

    Article  MATH  MathSciNet  Google Scholar 

  2. Altenberg L. (1991). Chaos from linear frequency-dependent selection. Am. Nat. 138(1): 51–68

    Article  Google Scholar 

  3. Andreasen V. and Christiansen F.B. (1995). Slow coevolution of a viral pathogen and its diploid host. Philos. Trans. R. Soc. Lond. B Biol. Sci. 348(1325): 341–354

    Article  Google Scholar 

  4. Arrowsmith D.K. and Place C.M. (1990). An Introduction to Dynamical Systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Asmussen M.A. (1979). Regular and chaotic cycling in models of ecological genetics. Theor. Popul. Biol. 16(2): 172–190

    Article  MATH  MathSciNet  Google Scholar 

  6. Asmussen M.A. and Feldman M.W. (1977). Density dependent selection 1: A stable feasible equilibrium may not be attainable. J. Theor. Biol. 64(4): 603–618

    Article  Google Scholar 

  7. Bodmer W.F. (1965). Differential fertility in population genetics models. Genetics 51(3): 411–424

    Google Scholar 

  8. Costantino R.F., Desharnais R.A., Cushing J.M. and Dennis B. (1997). Chaotic dynamics in an insect population. Science 275(5298): 389–391

    Article  Google Scholar 

  9. Cressman R. (1988). Frequency-dependent viability selection (a single-locus, multi-phenotype model). J. Theor. Biol. 130(2): 147–165

    Article  MathSciNet  Google Scholar 

  10. Dennis B., Desharnais R.A., Cushing J.M., Henson S.M. and Costantino R.F. (2001). Estimating chaos and complex dynamics in an insect population. Ecol. Monogr. 71(2): 277–303

    Article  MathSciNet  Google Scholar 

  11. Doebeli M. and de Jong G. (1998). A simple genetic model with non-equilibrium dynamics. J. Math. Biol. 36(6): 550–556

    Article  MATH  MathSciNet  Google Scholar 

  12. Ellner S. and Turchin P. (1995). Chaos in a noisy world: New methods and evidence from time-series analysis. Am. Nat. 145(3): 343–375

    Article  Google Scholar 

  13. Ellner S.P. and Turchin P. (2005). When can noise induce chaos and why does it matter: a critique. Oikos 111(3): 620–631

    Article  Google Scholar 

  14. Feldman M.W., Christiansen F.B. and Liberman U. (1983). On some models of fertility selection. Genetics 105(4): 1003–1010

    Google Scholar 

  15. Gavrilets S. (1998). One-locus two-allele models with maternal (parental) selection. Genetics 149(2): 1147–1152

    Google Scholar 

  16. Gavrilets S. and Hastings A. (1995). Intermittency and transient chaos from simple frequency-dependent selection. Proc. R. Soc. Lond. B Biol. Sci. 261(1361): 233–238

    Article  Google Scholar 

  17. Govaerts W., Kuznetsov Y.A. and Dhooge A. (2005). Numerical continuation of bifurcations of limit cycles in MATLAB. SIAM J. Sci. Comput. 27(1): 231–252

    Article  MATH  MathSciNet  Google Scholar 

  18. Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol 42. Springer, New York (1983)

  19. Hadeler K.P. and Glas D. (1983). Quasimonotone systems and convergence to equilibrium in a population genetic model. J. Math. Anal. Appl. 95(2): 297–303

    Article  MATH  MathSciNet  Google Scholar 

  20. Hadeler K.P. and Liberman U. (1975). Selection model with fertility differences. J. Math. Biol. 2(1): 19–32

    Article  MATH  MathSciNet  Google Scholar 

  21. Hastings A. (1981). Stable cycling in discrete-time genetic models. Proc. Natl. Acad. Sci. U. S. A. 78(11): 7224–7225

    Article  MATH  MathSciNet  Google Scholar 

  22. Hofbauer J. and Iooss G. (1984). A Hopf-bifurcation theorem for difference-equations approximating a differential-equation. Monatsh. Math. 98(2): 99–113

    Article  MathSciNet  Google Scholar 

  23. Iwasa Y. and Pomiankowski A. (1995). Continual change in mate preferences. Nature 377(6548): 420–422

    Article  Google Scholar 

  24. Josić K. (1997). Local bifurcations in the symmetric model of selection with fertility differences. J. Theor. Biol. 189(3): 291–295

    Article  Google Scholar 

  25. Karlin S. and Lessard S. (1986). Theoretical Studies on Sex Ratio Evolution. Princeton University Press, Princeton

    Google Scholar 

  26. Kingman J.F.C. (1961). A matrix inequality. Quart. J. Math. 12: 78–80

    Article  MATH  MathSciNet  Google Scholar 

  27. Koth M. and Kemler F. (1986). A one locus-two allele selection model admitting stable limit cycles. J. Theor. Biol. 122(3): 263–268

    Article  MathSciNet  Google Scholar 

  28. Kuznetsov Y.A.: Elements Of Applied Bifurcation Theory, Appl. Math. Sci., vol. 112, 3rd edn. Springer, New York (2004)

  29. Li C. and Chen G. (2003). An improved version of the marotto theorem. Chaos Solitons Fractals 18: 69–77

    Article  MATH  MathSciNet  Google Scholar 

  30. Li T.Y. and Yorke J.A. (1975). Period three implies chaos. Am. Math. Monthly 82(10): 985–992

    Article  MATH  MathSciNet  Google Scholar 

  31. Marotto F.R. (1978). Snap-back repellers imply chaos in R n. J. Math. Anal. Appl. 63(1): 199–223

    Article  MATH  MathSciNet  Google Scholar 

  32. May R.M. (1975). Biological populations obeying difference equations: stable points, stable cycles and chaos. J. Theor. Biol. 51(2): 511–524

    Article  Google Scholar 

  33. May R.M. (1976). Simple mathematical models with very complicated dynamics. Nature 261(5560): 459–467

    Article  Google Scholar 

  34. May R.M. and Anderson R.M. (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. Lond. B Biol. Sci. 219(1216): 281–313

    Article  MATH  Google Scholar 

  35. Maynard Smith J. and Hofbauer J. (1987). The battle of the sexes a genetic model with limit cycle behavior. Theor. Popul. Biol. 32(1): 1–14

    Article  MATH  MathSciNet  Google Scholar 

  36. Pearce G.P. and Spencer H.G. (1992). Population genetic models of genomic imprinting. Genetics 130(4): 899–907

    Google Scholar 

  37. Penrose L.S. (1949). The meaning of fitness in human populations. Ann. Eugen. 14(4): 301–304

    Google Scholar 

  38. Pollak E. (1978). With selection for fecundity the mean fitness does not necessarily increase. Genetics 90(2): 383–389

    MathSciNet  Google Scholar 

  39. Reik W. and Walter J. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2(1): 21–32

    Article  Google Scholar 

  40. Scheuer P. and Mandel S. (1959). An inequality in population genetics. Heredity 13: 519–524

    Article  Google Scholar 

  41. Selgrade J.F. and Namkoong G. (1984). Dynamical behavior of differential equation models of frequency and density dependent populations. J. Math. Biol. 19(1): 133–146

    Article  MATH  MathSciNet  Google Scholar 

  42. Selgrade J.F. and Ziehe M. (1987). Convergence to equilibrium in a genetic model with differential viability between the sexes. J. Math. Biol. 25(5): 477–490

    MATH  MathSciNet  Google Scholar 

  43. Spencer H.G. (2003). Further properties of Gavrilets’ one-locus two-allele model of maternal selection. Genetics 164(4): 1689–1692

    Google Scholar 

  44. Spencer H.G., Feldman M.W. and Clark A.G. (1998). Genetic conflicts, multiple paternity and the evolution of genomic imprinting. Genetics 148(2): 893–904

    Google Scholar 

  45. Spencer H.G., Dorn T. and LoFaro T. (2006). Population models of genomic imprinting. II. Maternal and fertility selection. Genetics 173(4): 2391–2398

    Article  Google Scholar 

  46. Wood A.J. and Oakey R.J. (2006). Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet. 2(11): e147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Van Cleve.

Additional information

Dedicated to the memory of Samuel Karlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Cleve, J., Feldman, M.W. Stable long-period cycling and complex dynamics in a single-locus fertility model with genomic imprinting. J. Math. Biol. 57, 243–264 (2008). https://doi.org/10.1007/s00285-008-0156-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0156-4

Keywords

Mathematics Subject Classification (2000)

Navigation