Skip to main content
Log in

Formal analysis of resonance entrainment by central pattern generator

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The neuronal circuit controlling the rhythmic movements in animal locomotion is called the central pattern generator (CPG). The biological control mechanism appears to exploit mechanical resonance to achieve efficient locomotion. The objective of this paper is to reveal the fundamental mechanism underlying entrainment of CPGs to resonance through sensory feedback. To uncover the essential principle, we consider the simplest setting where a pendulum is driven by the reciprocal inhibition oscillator. Existence and properties of stable oscillations are examined by the harmonic balance method, which enables approximate but insightful analysis. In particular, analytical conditions are obtained under which harmonic balance predicts existence of an oscillation at a frequency near the resonance frequency. Our result reveals that the resonance entrainment can be maintained robustly against parameter perturbations through two distinct mechanisms: negative integral feedback and positive rate feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown T. (1911). The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. Lond. 84: 308–319

    Article  Google Scholar 

  2. Grillner S., Buchanan J., Walker P. and Brodin L. (1988). Neural Control of Rhythmic Movements in Vertebrates. Wiley, New York

    Google Scholar 

  3. Orlovsky G., Deliagina T. and Grillner S. (1999). Neuronal Control of Locomotion: From Mollusc to Man. Oxford University Press, New York

    Google Scholar 

  4. Cavagna G., Heglund N. and Taylor C. (1977). Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Physiol. 233: R243–R261

    Google Scholar 

  5. Rose J. and Gamble J. (2003). Human Walking, 3rd edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  6. Hatsopoulos N.G. and Warren W.H. Jr. (1996). Resonance tuning in rhythmic arm movements. J. Motor Behav. 28(1): 3–14

    Article  Google Scholar 

  7. Hatsopoulos N. (1996). Coupling the neural and physical dynamics in rhythmic movements. Neural Comput. 8(3): 567–581

    Article  Google Scholar 

  8. Williamson M. (1998). Neural control of rhythmic arm movements. Neural Netw. 11: 1379–1394

    Article  Google Scholar 

  9. Matsuoka K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52: 367–376

    Article  MATH  MathSciNet  Google Scholar 

  10. Matsuoka K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biol. Cybern. 56: 345–353

    Article  Google Scholar 

  11. Friesen W. (1994). Reciprocal inhibition: a mechanism underlying oscillatory animal movements. Neurosci. Biobehav. Rev. 18(4): 547–553

    Article  Google Scholar 

  12. Blaquiere A. (1966). Nonlinear System Analysis. Academic Press, New York

    Google Scholar 

  13. Vidyasagar M. (1978). Nonlinear Systems Analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  14. Khalil H. (1996). Nonlinear Systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  15. Verdaasdonk B., Koopman H. and der Helm F.V. (2006). Energy efficient and robust rhythmic limb movement by central pattern generators. Neural Netw. 19(4): 388–400

    Article  MATH  Google Scholar 

  16. Verdaasdonk B., Koopman H. and der Helm F.V. (2007). Resonance tuning in a neuro-musculo-skeletal model of the forearm. Biol. Cybern. 96(2): 165–180

    Article  MATH  Google Scholar 

  17. Williams C. and DeWeerth S. (2007). A comparison of resonance tuning with positive versus negative sensory feedback. Biol. Cybern. 96: 603–614

    Article  MATH  MathSciNet  Google Scholar 

  18. Simoni M. and DeWeerth S. (2007). Sensory feedback in a half-center oscillator model. IEEE Trans. Biomed. Eng. 54(2): 193–204

    Article  Google Scholar 

  19. Iwasaki T. and Zheng M. (2006). Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance. Biol. Cybern. 94(4): 245–261

    Article  MATH  MathSciNet  Google Scholar 

  20. Iwasaki, T.: Analysis and synthesis of central pattern generators via multivariable harmonic balance. In: American Control Conference, pp. 4106–4111. Minneapolis, 14–16 June (2006)

  21. Zheng M., Friesen W. and Iwasaki T. (2007). Systems-level modeling of neuronal circuits for leech swimming. J. Comput. Neurosci. 22(1): 21–38. 10.1007/s10827-006-9648-7

    Article  Google Scholar 

  22. Sekerli M. and Butera R. (2005). Oscillations in a simple neuromechanical system: underlying mechanisms. J. Comp. Neurosci. 9: 181–197

    Article  MathSciNet  Google Scholar 

  23. Wallen P. and Williams T. (1984). Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. J. Physiol. 347: 225–239

    Google Scholar 

  24. Yu X., Nguyen B. and Friesen W.O. (1999). Sensory feedback can coordinate the swimming activity of the leech. J. Neurosci. 19(11): 4634–4643

    Google Scholar 

  25. Friesen W. and Cang J. (2001). Sensory and central mechanisms control of intersegmental coordination. Curr. Opin. Neurobiol. 11: 678–683

    Article  Google Scholar 

  26. Iwasaki T. and Shibata G. (2001). LPV system analysis via quadratic separator for uncertain implicit systems. IEEE Trans. Automat. Contr. 46(8): 1195–1208

    Article  MATH  MathSciNet  Google Scholar 

  27. Pogromsky A., Glad T. and Nijmeijer H. (1999). On diffusion driven oscillations in coupled dynamical systems. Int. J. Bifurcat. Chaos 9(4): 629–644

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Iwasaki.

Additional information

This work is supported by NSF 0237708, NSF 0654070, and NIH/NINDS/CRCNS 1 R01 NS46057-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futakata, Y., Iwasaki, T. Formal analysis of resonance entrainment by central pattern generator. J. Math. Biol. 57, 183–207 (2008). https://doi.org/10.1007/s00285-007-0151-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0151-1

Keywords

Mathematics Subject Classification (2000)

Navigation