Skip to main content
Log in

Adaptive dynamics for physiologically structured population models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309–338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579–612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka–Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N  =  1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athreya K. (1992). Rates of decay for the survival probability of a mutant gene. J. Math. Biol. 30: 577–581

    Article  MATH  MathSciNet  Google Scholar 

  2. Athreya K. (1993). Rates of decay for the survival probability of a mutant gene. II. The multitype case. J. Math. Biol. 32: 45–53

    Article  MATH  MathSciNet  Google Scholar 

  3. Beccari, C.: Tutorial: typesetting maths for science and tech according to ISO 31/XI. Technical report, T E X Users Group (1997)

  4. Caswell, H.: Population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland (2001)

  5. Champagnat, N.: Convergence of adaptive dynamics n-morphic jump processes to the canonical equation and degenerate diffusion approximation. Prépublication de l’Université de Nanterre (Paris X) no. 03/7 (2003)

  6. Champagnat, N.: Etude mathématique de modèles stochastiques d’évolution issus de la théorie écologique des dynamiques adaptives. PhD thesis, Paris X, Paris (France) (2004)

  7. Champagnat N. (2006). A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl. 116: 1127–1160

    Article  MATH  MathSciNet  Google Scholar 

  8. Champagnat N., Ferrière R. and Ben Arous G. (2001). The canonical equation of adaptive dynamics: a mathematical view. Selection 2: 71–81

    Google Scholar 

  9. Champagnat N., Ferrière R. and Méléard S. (2006). Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69: 297–321

    Article  MATH  Google Scholar 

  10. Christiansen F. (1991). On conditions for evolutionary stability for a continuously varying character. Am. Nat. 138: 37–50

    Article  Google Scholar 

  11. Christiansen F. and Loeschke V. (1987). Evolution and intraspecific competition. III. One-locus theory for small additive gene effects and multidimensional resource qualities. Theor. Popul. Biol. 31: 33–46

    Article  MATH  Google Scholar 

  12. Cressman R. and Hofbauer J. (2005). Measure dynamics on a one-dimensional continuous trait space: Theoretical foundations for adaptive dynamics. Theor. Popul. Biol. 67: 47–59

    Article  MATH  Google Scholar 

  13. Dercole, F.: Evolutionary dynamics through bifurcation analysis: methods and applications. PhD thesis, Department of Electronics and Information, Politecnico di Milano, Milano (Italy) (2002)

  14. Dercole, F., Rinaldi, S.: Analysis of evolutionary processes: the adaptive dynamics approach and its applications. Princeton University Press, Princeton (in press)

  15. Dieckmann U. and Law R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34: 579–612

    MATH  MathSciNet  Google Scholar 

  16. Dieckmann U., Marrow P. and Law R. (1995). Evolutionary cycling in predator–prey interactions: population dynamics and the red queen. J. Theor. Biol. 176: 91–102

    Article  Google Scholar 

  17. Dieckmann U. and Metz J. (2006). Surprising evolutionary predictions from enhanced ecological realism. Theor. Popul. Biol. 69: 263–281

    Article  MATH  Google Scholar 

  18. Diekmann O. (2004). A beginner’s guide to adaptive dynamics. Math. Model. Popul. Dyn. 63: 47–84

    MathSciNet  Google Scholar 

  19. Diekmann, O., Getto, P., Gyllenberg, M.: Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars. SIAM J. Math. Anal. (in press)

  20. Diekmann O., Gyllenberg M., Huang H., Kirkilionis M., Metz J. and Thieme H. (2001). On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol. 43: 157–189

    Article  MATH  MathSciNet  Google Scholar 

  21. Diekmann O., Gyllenberg M. and Metz J. (2003). Steady state analysis of structured population models. Theor. Popul. Biol. 63: 309–338

    Article  MATH  Google Scholar 

  22. Eshel I. (1981). On the survival probability of a slightly advantageous mutant gene with a general distribution of progeny size—a branching process model. J. Math. Biol. 12: 355–362

    Article  MATH  MathSciNet  Google Scholar 

  23. Eshel I. (1984). On the survival probability of a slightly advantageous mutant gene in a multitype population: a multidimensional branching process model. J. Math. Biol. 19: 201–209

    Article  MATH  MathSciNet  Google Scholar 

  24. Ewens W. (1969). Population Genetics. Methuen, London

    MATH  Google Scholar 

  25. Geritz S. (2005). Resident-invader dynamics and the coexistence of similar strategies. J. Math. Biol. 50: 67–82

    Article  MATH  MathSciNet  Google Scholar 

  26. Geritz S., Gyllenberg M., Jacobs F. and Parvinen K. (2002). Invasion dynamics and attractor inheritance. J. Math. Biol. 44: 548–560

    Article  MATH  MathSciNet  Google Scholar 

  27. Geritz S., Kisdi E., Meszéna G. and Metz J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35–57

    Article  Google Scholar 

  28. Geritz S., Metz J. and van der Meijden E. (1999). Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol. 55: 324–343

    Article  MATH  Google Scholar 

  29. Getto, P.: On some quasilinear structured population models. Thesis, Utrecht University, Utrecht (the Netherlands) (2005)

  30. Gillespie D. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22: 403–434

    Article  MathSciNet  Google Scholar 

  31. Greiner G., Heesterbeek J. and Metz J. (1994). A singular perturbation theorem for evolution equations and time-scale arguments for structured population models. Can. Appl. Math. Q. 2: 435–459

    MATH  MathSciNet  Google Scholar 

  32. Haccou P., Jagers P. and Vatutin V. (2005). Branching Processes—Variation, Growth, and Extinction of Populations. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  33. Haldane J. (1927). A mathematical theory of natural and artificial selection. v. selection and mutation. Proc. Camb. Philos. Soc. 23: 838–844

    Article  MATH  Google Scholar 

  34. Hofbauer J. and Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Hoppe F. (1992). Asymptotic rates of growth of the extinction probability of a mutant gene. J. Math. Biol. 30: 547–566

    Article  MATH  MathSciNet  Google Scholar 

  36. Kendall D. (1948). On the generalized “birth-and-death” process. Ann. Math. Stat. 19: 1–15

    Article  MathSciNet  MATH  Google Scholar 

  37. Kondrashov A. and Turelli M. (1992). Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics 132: 603–618

    Google Scholar 

  38. Lande R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33: 402–416

    Article  Google Scholar 

  39. Leimar O. (2001). Evolutionary change and darwinian demons. Selection 2(1–2): 65–72

    Google Scholar 

  40. Leimar O. (2005). The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching. Am. Nat. 165: 669–681

    Article  Google Scholar 

  41. Leimar, O.: Multidimensional convergence stability and the canonical adaptive dynamics. In: Dieckmann, U., Metz, J.A.J. (eds.) Elements of Adaptive Dynamics. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, Cambridge (UK) (to appear)

  42. Levin S. (1970). Community equilibria and stability and an extension of the competitive exclusion principle. Am. Nat. 104: 413–423

    Article  Google Scholar 

  43. Lush J. (1937). Animal Breeding Plans. Iowa State College Press, Ames

    Google Scholar 

  44. Magnus J. and Neudecker H. (1988). Matrix Differential Calculus with applications in Statistics and Econometrics. Wiley, New York

    MATH  Google Scholar 

  45. Meszéna G., Gyllenberg M., Jacobs F. and Metz J. (2005). Link between population dynamics and dynamics of darwinian evolution. Phys. Rev. Lett. 95(078105): 1–4

    Google Scholar 

  46. Meszéna G., Gyllenberg M., Pásztor L. and Metz J. (2006). Competitive exclusion and limiting similarity: a unified theory. Theor. Popul. Biol. 69: 68–87

    Article  MATH  Google Scholar 

  47. Meszéna, G., Metz, J.: Species diversity and population regulation: the importance of environmental feedback dimensionality. IIASA Interim Report IR-99-045 (1999)

  48. Metz J. and Diekmann O. (1986). The Dynamics of Physiologically Structured Populations, volume 68 of Lecture Notes in Biomathematics. Springer, Berlin

    Google Scholar 

  49. Metz J., Geritz S., Meszéna G., Jacobs F. and Van Heerwaarden J. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: Van Strien, S.J. and Verduyn Lunel, S.M. (eds) Stochastic and Spatial Structures of Dynamical Systems, volume 45 of KNAW Symposium Lectures, Section Science, First Series, pp 183–231. North-Holland, Amsterdam

    Google Scholar 

  50. Metz J., Nisbet R. and Geritz S. (1992). How should we define fitness for general ecological scenarios?. Trends Ecol. Evol. 7: 198–202

    Article  Google Scholar 

  51. Mollison, D.: The structure of epidemic models. In: Epidemic Models: their Structure and Relation to Data, pp. 27–28. Cambridge University Press, Cambridge (1995)

  52. Pigliucci M. (2006). Genetic variance–covariance matrices: a critique of the evolutionary quantitative genetics research program. Biol. Philos. 21: 1–23

    Article  Google Scholar 

  53. Schneider K. (2006). A multilocus-multiallele analysis of frequency-dependent selection induced by intraspecific competition. J. Math. Biol. 52: 483–523

    Article  MATH  MathSciNet  Google Scholar 

  54. Turelli M. (1984). Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor. Popul. Biol. 25: 138–193

    Article  MATH  Google Scholar 

  55. van Kampen N. (1981). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam

    MATH  Google Scholar 

  56. Vukics A., Asbóth J. and Meszéna G. (2003). Speciation in multidimensional evolutionary space. Phys. Rev. E 68(041903): 1–10

    Google Scholar 

  57. Zhang X. and Hill W. (2005). Genetic variability under mutation selection balance. Trends Ecol. Evol. 20: 468–470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Durinx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durinx, M., (Hans) Metz, J.A.J. & Meszéna, G. Adaptive dynamics for physiologically structured population models. J. Math. Biol. 56, 673–742 (2008). https://doi.org/10.1007/s00285-007-0134-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0134-2

Keywords

Mathematics Subject Classification (2000)

Navigation