Skip to main content
Log in

Introduction to special issue on RNA

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this introduction to the special issue on RNA, we provide a brief overview of some of the novel and exciting biological discoveries concerning diverse roles played by RNA, and subsequently we give a rapid summary of some algorithmic aspects of RNA structure and alignment. Each of the contributions to this special issue is briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RNA: Really new advances. Economist (2007). http://www.economist.com/opinion/displaystory.cfm?story_id=9333471

  2. Ban N., Nissen P., Hansen J., Moore P.B. and Steitz T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905

    Article  Google Scholar 

  3. Banerjee A.R., Jaeger J.A. and Turner D.H. (1993). Thermal unfolding of a group I ribozyme: The low-temperature transition is primarily disruption of tertiary structure. Biochemistry 32: 153–163

    Article  Google Scholar 

  4. Barrick J.E., Corbino K.A., Winkler W.C., Nahvi A., Mandal M., Collins J., Lee M., Roth A., Sudarsan N., Jona I., Wickiser J.K. and Breaker R.R. (2004). New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101(17): 6421–6426

    Article  Google Scholar 

  5. Bekaert M., Bidou L., Denise A., Duchateau-Nguyen G., Forest J., Froidevaux C., Hatin I., Rousset J. and Termier M. (2003). Towards a computational model for  − 1 eukaryotic frameshifting sites. Bioinformatics 19: 327–335

    Article  Google Scholar 

  6. Bernhart S.H., Tafer H., Mückstein U., Flamm C., Stadler P.F. and Hofacker I.L. (2006). Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 1(1): 3

    Article  Google Scholar 

  7. Bernstein F.C., Koetzle T.F., Williams G.J.B., Brice M.D., Rogers J.R., Kennard O., Shimanouchi T., Tasumi M. and Meyer E.F. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures sequence-structure patterns across diverse proteins. J. Mol. Biol. 112: 535–542

    Article  Google Scholar 

  8. Böck A., Forschhammer K., Heider J. and Baron C. (1991). Selenoprotein synthesis: An expansion of the genetic code. Trends Biochem. Sci. 16: 463–467

    Article  Google Scholar 

  9. Cheah M.T., Wachter A., Sudarsan N. and Breaker R.R. (2007). Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447(7143): 497–500

    Article  Google Scholar 

  10. Clote P. (2005). An efficient algorithm to compute the landscape of locally optimal RNA secondary structures with respect to the Nussinov–Jacobson energy model. J. Comput. Biol. 1: 83–101

    Article  Google Scholar 

  11. Clote P., Waldispuhl J., Behzadi B. and Steyaert J.-M. (2005). Energy landscape of k-point mutants of an RNA molecule. Bioinformatics 21(22): 4140–4147

    Article  Google Scholar 

  12. Commans S. and Böck A. (1999). Selenocysteine inserting tRNAs: an overview. FEMS Microbiol. Rev. 23: 333–351

    Article  Google Scholar 

  13. Dimitrov R.A. and Zuker M. (2004). Prediction of hybridization and melting for double-stranded nucleic acids. Biophys. J. 87: 215–226

    Article  Google Scholar 

  14. Ding, Y.: Sfold. http://sfold.wadsworth.org/index.pl

  15. Ding Y. and Lawrence C.E. (2003). A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31: 7280–7301

    Article  Google Scholar 

  16. Dirks R.M. and Pierce N.A. (2003). A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24(13): 1664–1677

    Article  Google Scholar 

  17. Doudna J.A. and Cech T.R. (2002). The chemical repertoire of natural ribozymes. Nature 418(6894): 222–228

    Article  Google Scholar 

  18. Dror O., Nussinov R. and Wolfson H.J. (2006). The ARTS web server for aligning RNA tertiary structures. Nucleic Acids Res. 34(Web): W412–W415

    Article  Google Scholar 

  19. Durbin R., Eddy S., Krogh A. and Mitchison G. (1998). Biological Sequence Analysis: Probabalistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge

    Google Scholar 

  20. Ferre, F., Ponty, Y., Lorenz, W.A., Clote, P.: DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities. Nucleic Acids Res. 35(Web Server issue), W659–668 (2007), July 2007

  21. Freyhult, E., Moulton, V., Clote, P.: Boltzmann probability of RNA structural neighbors and riboswitch detection. Bioinformatics (2007). doi:10.1093/bioinformatics/btm314

  22. Havgaard J.H., Lyngsø R., Stormo G. and Gorodkin J. (2005). Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9): 1815–1824

    Article  Google Scholar 

  23. Heider J., Baron C. and Böck A. (1992). Coding from a distance dissection of the mrna elements required for the incorporation of selenocysteine into protein. EMBO J. 11: 3759–3766

    Google Scholar 

  24. Hofacker I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Res. 31: 3429–3431

    Article  Google Scholar 

  25. Hubbard J.M. and Hearst J.E. (1991). Predicting the three-dimensional folding of transfer RNA with a computer modeling protocol. Biochemistry 30: 5458–5465

    Article  Google Scholar 

  26. Hüttenhofer, A., Böck, A.: RNA structures involved in selenoprotein synthesis. RNA structure and function, pp. 603–639. Cold Spring Harbor Laboratory Press, New York (1998)

  27. Schmitz M.  and Tinoco I. (2000). Thermodynamics of formation of secondary structure in nucleic acids. In: Di Cera, E. (eds) Thermodynamics in Biology, pp 131–176. Oxford University Press, New York

    Google Scholar 

  28. Hofacker I.L., Fontana W., Stadler P.F., Bonhoeffer L.S., Tacker M. and Schuster P. (1994). Fast folding and comparison of RNA secondary structures. Monatsch. Chem. 125: 167–188

    Article  Google Scholar 

  29. Lemieux S. and Major F. (2002). RNA canonical and non-canonical base pairing types: A recognition method and complete repertoire. Nucleic Acids Res. 30(19): 4250–4263

    Article  Google Scholar 

  30. Leontis N. and Westhof E. (2003). Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res. 31(13): 3450–3460

    Article  Google Scholar 

  31. Leontis N.B., Stombaugh J. and Westhof E. (2002). Motif prediction in ribosomal RNAs: Lessons and prospects for automated motif prediction in homologous RNA molecules. Biochimie 84: 961–973

    Article  Google Scholar 

  32. Lim L.P., Glasner M.E., Yekta S., Burge C.B. and Bartel D.P. (2003). Vertebrate microRNA genes. Science 299(5612): 1540

    Article  Google Scholar 

  33. Lowe T. and Eddy S. (1997). tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25(5): 955–964

    Article  Google Scholar 

  34. Major F., Turcotte M., Gautheret D., Lapalme G., Fillion E. and Cedergren R. (1991). The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science 253(5025): 1225–1260

    Article  Google Scholar 

  35. Mandal M., Lee M., Barrick J.E., Weinberg Z., Emilsson G.M., Ruzzo W.L. and Breaker R.R. (2004). A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306(5694): 275–279

    Article  Google Scholar 

  36. Markham N.R. and Zuker M. (2005). DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33: W577–W581

    Article  Google Scholar 

  37. Mathews D.H. and Turner D.H. (2006). Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16: 270–278

    Article  Google Scholar 

  38. Mathews D.H. and Turner D.H. (2002). Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol. 317: 191–203

    Article  Google Scholar 

  39. Mathews D.H., Turner D.H. and Zuker M. (2000). Secondary structure prediction. In: Beaucage, S., Bergstrom, D.E., Glick, G.D., and Jones, R.A. (eds) Current Protocols in Nucleic Acid Chemistry, pp 11.2.1–11.2.10. Wiley, New York

    Google Scholar 

  40. Matthews D.H., Sabina J., Zuker M. and Turner D.H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288: 911–940

    Article  Google Scholar 

  41. McCaskill J.S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29: 1105–1119

    Article  Google Scholar 

  42. Moon S., Byun Y., Kim H.-J., Jeong S. and Han K. (2004). Predicting genes expressed via  − 1 and  + 1 frameshifts. Nucleic Acids Res. 32(16): 4884–4892

    Article  Google Scholar 

  43. Ogata H., Akiyuna Y. and Kanehisa M. (1995). A genetic algorithm based molecular modeling technique for RNA stem-loop structures. Nucleic Acids Res. 23(3): 419–426

    Article  Google Scholar 

  44. Nissen P., Hansen J., Ban N., Moore P.B. and Steitz T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289(5481): 920–923

    Article  Google Scholar 

  45. Nissen P., Ippolito J.A., Ban N., Moore P.B. and Steitz T.A. (2001). RNA tertiary interactions in the large ribosomal subunit: The A-minor motifautomated identification of RNA. Proc. Natl. Acad. Sci. USA 98(9): 4899

    Article  Google Scholar 

  46. Nussinov R. and Jacobson A.B. (1980). Fast algorithm for predicting the secondary structure of single stranded RNA. Proc. Natl. Acad. Sci. USA 77(11): 6309–6313

    Article  Google Scholar 

  47. Omer A.D., Lowe T.M., Russell A.G., Ebhardt H., Eddy S.R. and Dennis P.P. (2000). Homologues of small nucleolar RNAs in Archaea. Science 288: 517–522

    Article  Google Scholar 

  48. ENCODE Project Consortium.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799–816 (2007)

    Google Scholar 

  49. Reeder J. and Giegerich R. (2004). Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5: 104

    Article  Google Scholar 

  50. Rivas E. and Eddy S.R. (1999). A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285: 2053–2068

    Article  Google Scholar 

  51. Rivas, E., Eddy, S.R.: Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2, 8 (2001) [Epub ahead of print]

  52. Robertson N. and Seymour P. (1986). Graph minors II. Algorithmic aspects of tree-width. J Algorithms 7: 309–322

    Article  MATH  MathSciNet  Google Scholar 

  53. Serganov A., Yuan Y.R., Pikovskaya O., Polonskaia A., Malinina L., Phan A.T., Hobartner C., Micura R., Breaker R.R. and Patel D.J. (2004). Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11(12): 1729–1741

    Article  Google Scholar 

  54. Soro S. and Tramontano A. (2005). The prediction of protein function at CASP6. Proteins 61: 201–213

    Article  Google Scholar 

  55. Steffen P., Voss B., Rehmsmeier M., Reeder J. and Giegerich R. (2006). Rnashapes: An integrated RNA analysis package based on abstract shapes. Bioinformatics 22(4): 500–503

    Article  Google Scholar 

  56. Szweczak A.A. and Moore P.B. (1995). The sarcin/ricin loop, a modular RNA. J. Mol. Biol. 247: 81–98

    Article  Google Scholar 

  57. Uliel S., Liang X.H., Unger R. and Michaeli S. (2004). Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions. Int. J. Parasitol. 34(4): 445–454

    Article  Google Scholar 

  58. van Batenburg F.H.D., Gultyaev A.P., Pleij C.W.A., Ng J. and Oliehoek J. (2000). PseudoBase: A database with RNA pseudoknots. Nucleic Acids Res. 28(1): 201–204

    Article  Google Scholar 

  59. Voss, B., Giegerich, R., Rehmsmeier, M.: Complete probabilistic analysis of RNA shapes. BMC Biol. 4(1) (2006) [Epub ahead of print]

  60. Waldispühl J. and Clote P. (2007). Computing the partition function and sampling for saturated secondary structures of RNA, with respect to the Turner energy model. J. Comput. Biol. 14(2): 190–215

    Article  MathSciNet  Google Scholar 

  61. Wuchty S., Fontana W., Hofacker I.L. and Schuster P. (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49: 145–164

    Article  Google Scholar 

  62. SantaLucia J., Burkard M.E., Kierzek R., Schroeder S.J., Jiao X., Cox C., Turner D.H. and Xia T. (1999). Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37: 14719–35

    Article  Google Scholar 

  63. Yamaguchi K. and Del Carpio C.A. (1998). A genetic programming based system for the prediction of secondary and tertiary structures of RNA. Genome Inform. 9: 382–383

    Google Scholar 

  64. Yand H., Jossinet F., Leontis N., Chen L., Westbrook J., Berman H. and Westhof E. (2003). Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res. 31(13): 3450–3460

    Article  Google Scholar 

  65. Zuker M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13): 3406–3415

    Article  Google Scholar 

  66. Zuker M. and Stiegler P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9: 133–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Clote.

Additional information

This work is funded in part by the National Science Foundation under Grant No. DBI-0543506.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clote, P. Introduction to special issue on RNA. J. Math. Biol. 56, 3–13 (2008). https://doi.org/10.1007/s00285-007-0130-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0130-6

Mathematics Subject Classification (2000)

Navigation