Skip to main content

Advertisement

Log in

Counting labeled transitions in continuous-time Markov models of evolution

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Counting processes that keep track of labeled changes to discrete evolutionary traits play critical roles in evolutionary hypothesis testing. If we assume that trait evolution can be described by a continuous-time Markov chain, then it suffices to study the process that counts labeled transitions of the chain. For a binary trait, we demonstrate that it is possible to obtain closed-form analytic solutions for the probability mass and probability generating functions of this evolutionary counting process. In the general, multi-state case we show how to compute moments of the counting process using an eigen decomposition of the infinitesimal generator, provided the latter is a diagonalizable matrix. We conclude with two examples that demonstrate the utility of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi J. and Hasegawa M. (1996). Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42: 459–468

    Google Scholar 

  2. Ball F. (1997). Empirical clustering of bursts of openings in Markov and semi-Markov models of single channel gating incorporating time interval omission. Adv. Appl. Probab. 29: 909–946

    Article  MATH  Google Scholar 

  3. Ball F. and Milne R.K. (2005). Simple derivations of properties of counting processes associated with Markov renewal processes. J. Appl. Probab. 42: 1031–1043

    Article  MATH  MathSciNet  Google Scholar 

  4. Chatfield C. (2004). The Analysis of Time Series: An Introduction. Chapman & Hall, London

    MATH  Google Scholar 

  5. Darroch J.N and Morris K.W. (1967). Some passage-time generating functions for discrete-time and continuous-time finite Markov chains. J. Appl. Probab. 4: 496–507

    Article  MATH  MathSciNet  Google Scholar 

  6. Felsenstein J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 13: 93–104

    Google Scholar 

  7. Felsenstein J. (2004). Inferring Phylogenies. Sinauer Associates Inc., Sunderland

    Google Scholar 

  8. Fitch W.M., Bush R.M., Bender C.A. and Cox N.J. (1997). Long term trends in the evolution of H(3) HA1 human influenza type A. Proc. Natl. Acad. Sci. USA 94: 7712–7718

    Article  Google Scholar 

  9. Guttorp P. (1995). Stochastic Modeling of Scientific Data. Chapman & Hall, Suffolk

    MATH  Google Scholar 

  10. Hasegawa M., Kishino H. and Yano T. (1985). Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160–174

    Article  Google Scholar 

  11. Henikoff S. and Henikoff J.G. (1992). Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89: 10915–10919

    Article  Google Scholar 

  12. Hobolth, A., Jensen, J.L.: Statistical inference in evolutionary models of DNA sequences via the EM algorithm. Stat. Appl. Gen. Mol. Biol. 4, Article 18 (2005)

    Google Scholar 

  13. Kass R.E. and Raftery A.E. (1995). Bayes factors. J. Am. Stat. Assoc. 90: 773–795

    Article  MATH  Google Scholar 

  14. Meng X.L. (1994). Posterior predictive P-values. Ann. Stat. 22: 1142–1160

    MATH  Google Scholar 

  15. Narayana S. and Neuts M.F. (1992). The first two moment matrices of the counts for the Markovian arrival process. Stoch. Models 8: 459–477

    Article  MATH  MathSciNet  Google Scholar 

  16. Neuts M.F. (1979). A versatile Markovian point process. J. Appl. Probab. 16: 764–779

    Article  MATH  MathSciNet  Google Scholar 

  17. Neuts M.F. (1992). Models based on the Markovian arrival process. IEICE Trans. Commun. E75-B: 1255–1265

    Google Scholar 

  18. Neuts M.F. (1995). Algorithmic Probability: a Collection of Problems. Chapman and Hall, London

    MATH  Google Scholar 

  19. Nielsen R. (2002). Mapping mutations on phylogenies. Syst. Biol. 51: 729–739

    Article  Google Scholar 

  20. Nielsen R. (2005). Molecular signatures of natural selection. Ann. Rev. Gen. 39: 197–218

    Article  Google Scholar 

  21. Oakley T.H. and Cunningham C.W. (2002). Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. Proc. Natl. Acad. Sci. USA 99: 1426–1430

    Article  Google Scholar 

  22. Pagel M. (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. B 255: 37–45

    Article  Google Scholar 

  23. Pagel M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48: 612–622

    Article  Google Scholar 

  24. Pollock D.D., Taylor W.R. and Goldman N. (1999). Coevolving protein residues: maximum likelihood identification and relationship to structure. J. Mol. Biol. 287: 187–198

    Article  Google Scholar 

  25. Rambaut A. and Grassly N.C. (1997). Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13: 235–238

    Google Scholar 

  26. Schadt E. and Lange K. (2002). Codon and rate variation models in molecular phylogeny. Mol. Biol. Evol. 19: 1534–1549

    Google Scholar 

  27. Schadt E.E., Sinsheimer J.S. and Lange K. (1998). Computational advances in maximum likelihood methods for molecular phylogeny. Genome Res. 8: 222–233

    Google Scholar 

  28. Siepel, A., Pollard, K.S., Haussler, D.: New methods for detecting lineage-specific selection. In: Proceedings of the 10th international conference on research in computational molecular biology, pp. 190–205 (2006)

  29. Suchard M.A., Weiss R.E., Dorman K.S. and Sinsheimer J.S. (2002). Inferring spatial phylogenetic variation along nucleotide sequences: a multiple change-point model. J. Am. Stat. Assoc. 98: 427–437

    Article  MathSciNet  Google Scholar 

  30. Templeton A.R. (1996). Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics 144: 1263–1270

    Google Scholar 

  31. Yang Z. (1994). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39: 306–314

    Article  Google Scholar 

  32. Yang Z. (1995). A space-time process model for the evolution of DNA sequences. Genetics 139: 993–1005

    Google Scholar 

  33. Yang Z., Nielsen R., Goldman N. and Pedersen A.M.K. (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155: 431–449

    Google Scholar 

  34. Zheng Q. (2001). On the dispersion index of a Markovian molecular clock. Math. Biosci. 172: 115–128

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc A. Suchard.

Additional information

V.N.M. was supported by a Dissertation Year Fellowship from the UCLA Graduate Division. M.A.S. is an Alfred P. Sloan Research Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minin, V.N., Suchard, M.A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56, 391–412 (2008). https://doi.org/10.1007/s00285-007-0120-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0120-8

Keywords

Mathematics Subject Classification (2000)

Navigation