Quiescence as a mechanism for cyclical hypoxia and acidosis

  • Kieran SmallboneEmail author
  • David J. Gavaghan
  • Philip K. Maini
  • J. Michael Brady


Tumour tissue characteristically experiences fluctuations in substrate supply. This unstable microenvironment drives constitutive metabolic changes within cellular populations and, ultimately, leads to a more aggressive phenotype. Previously, variations in substrate levels were assumed to occur through oscillations in the hæmodynamics of nearby and distant blood vessels. In this paper we examine an alternative hypothesis, that cycles of metabolite concentrations are also driven by cycles of cellular quiescence and proliferation. Using a mathematical modelling approach, we show that the interdependence between cell cycle and the microenvironment will induce typical cycles with the period of order hours in tumour acidity and oxygenation. As a corollary, this means that the standard assumption of metabolites entering diffusive equilibrium around the tumour is not valid; instead temporal dynamics must be considered.


Acidity Hypoxia Delay differential equations 

Mathematics Subject Classification (2000)

92B99 35K57 


  1. 1.
    Baudelet C., Ansiaux R., Jordan B., Havaux X., Macq B. and Gallez B. (2004). Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia? Phys. Med. Biol. 49: 3389–411 CrossRefGoogle Scholar
  2. 2.
    Braun R., Lanzen J. and Dewhirst M. (1999). Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats. Am. J. Physiol. 277: H551–H568 Google Scholar
  3. 3.
    Byrne H. (1999). A weakly nonlinear analysis of a model of avascular solid tumour growth. J. Math. Biol. 39: 59–9 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Casciari J., Sotirchos S. and Sutherland R. (1992). Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol. 151: 386–4 CrossRefGoogle Scholar
  5. 5.
    Dewhirst M., Kimura H., Rehmus S., Braun R., Papahadjopoulos D., Hong K. and Secomb T. (1996). Microvascular studies on the origins of perfusion-limited hypoxia. Br. J. Cancer Suppl. 27: S247–S251 Google Scholar
  6. 6.
    Franks S., Byrne H., Underwood J. and Lewis C. (2005). Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast. J. Theor. Biol. 232: 523–43 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gatenby R. and Gawlinski E. (1996). A reaction–diffusion model of cancer invasion. Cancer Res. 56: 5745–753 Google Scholar
  8. 8.
    Gatenby R. and Gillies R. (2004). Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 4: 891–99 CrossRefGoogle Scholar
  9. 9.
    Gilead A. and Neeman M. (1999). Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian carcinoma spheroids implanted in nude mice. Neoplasia 1: 226–30 CrossRefGoogle Scholar
  10. 10.
    Goda N., Ryan H., Khadivi B., McNulty W., Rickert R. and Johnson R. (2003). Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Mol. Cell. Biol. 23: 359–69 CrossRefGoogle Scholar
  11. 11.
    Greenspan H. (1972). Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51: 317–40 zbMATHGoogle Scholar
  12. 12.
    Hill R., De Jaeger K., Jang A. and Cairns R. (2001). pH, hypoxia and metastasis. Novartis Found. Symp. 240: 154–65 CrossRefGoogle Scholar
  13. 13.
    Kiani M., Pries A., Hsu L., Sarelius I. and Cokelet G. (1994). Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am. J. Physiol. 266: H1822–H1828 Google Scholar
  14. 14.
    Kimura H., Braun R., Ong E., Hsu R., Secomb T., Papahadjopoulos D., Hong K. and Dewhirst M. (1996). Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 56: 5522–528 Google Scholar
  15. 15.
    Martin G. and Jain R. (1994). Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 54: 5670– Google Scholar
  16. 16.
    McElwain D. and Morris L. (1978). Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth. Math. Biosci. 39: 147–57 CrossRefGoogle Scholar
  17. 17.
    Mikhlin S. and Smolitsky K. (1967). Approximate Methods for the Solution of Differential and Integral Equations. Elsevier, Amsterdam Google Scholar
  18. 18.
    Murphy M., Carlson J., Keough M., Claffey K., Signoretti S. and Loda M. (2004). Hypoxia regulation of the cell cycle in malignant melanoma: putative role for the cyclin-dependent kinase p27kip1. J. Cutan. Pathol. 31: 477–82 CrossRefGoogle Scholar
  19. 19.
    Patan S., Tanda S., Roberge S., Jones R., Jain R. and Munn L. (2001). Vascular morphogenesis and remodeling in a human tumor xenograft: blood vessel formation and growth after ovariectomy and tumor implantation. Circ. Res. 89: 732–39 CrossRefGoogle Scholar
  20. 20.
    Patel A., Gawlinski E., Lemieux S. and Gatenby R. (2001). A cellular automaton model of early tumor growth and invasion. J. Theor. Biol. 213: 315–1 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Pettet G., Please C., Tindall M. and McElwain D. (2001). The migration of cells in multicell tumor spheroids. Bull. Math. Biol. 63: 231–57 CrossRefGoogle Scholar
  22. 22.
    Shampine L. and Thompson S. (2001). Solving DDEs in MATLAB. Appl. Numer. Math. 37: 441–58 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Smallbone K., Gatenby R., Gillies R., Maini P. and Gavaghan D. (2007). Metabolic changes during carcinogenesis: potential impact on invasiveness. J. Theor. Biol. 244: 703–13 CrossRefMathSciNetGoogle Scholar
  24. 24.
    Smallbone K., Gavaghan D., Gatenby R. and Maini P. (2005). The role of acidity in solid tumour growth and invasion. J. Theor. Biol. 235: 476–84 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Sonveaux P., Dessy C., Martinive P., Havaux X., Jordan B., Gallez B., Gregoire V., Balligand J. and Feron O. (2004). Endothelin-1 is a critical mediator of myogenic tone in tumor arterioles: implications for cancer treatment. Cancer Res. 64: 3209–214 CrossRefGoogle Scholar
  26. 26.
    Warburg O. (1930). The Metabolism of Tumours. Constable Press, London Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Kieran Smallbone
    • 1
    Email author
  • David J. Gavaghan
    • 2
  • Philip K. Maini
    • 3
  • J. Michael Brady
    • 4
  1. 1.Manchester Centre for Integrative Systems BiologyManchester Interdisciplinary BiocentreManchesterUK
  2. 2.Oxford University Computing LaboratoryOxfordUK
  3. 3.Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK
  4. 4.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations