Skip to main content

Advertisement

Log in

Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community potential function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator–prey case the matrix of interactions is antisymmetric, and a nonzero population size must be sustained by an external resource. Time series of the diversity and population size for both models show approximate 1/f noise and power-law distributions for the lifetimes of communities and species. For the mutualistic model, these two lifetime distributions have the same exponent, while their exponents are different for the predator–prey model. The difference is probably due to greater resilience toward mass extinctions in the food-web like communities produced by the predator–prey model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso D. and McKane A.J. (2004). Sampling Hubbell’s neutral theory of biodiversity. Ecol. Lett. 7: 901–10

    Article  Google Scholar 

  2. Armstrong R.A. and McGehee R. (1980). Competitive exclusion. Am. Nat. 115: 151–70

    Article  MathSciNet  Google Scholar 

  3. Bak P. and Sneppen K. (1993). Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71: 4083–086

    Article  Google Scholar 

  4. Bascompte J., Jordano P. and Olesen J.M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431–33

    Article  Google Scholar 

  5. den Boer P.J. (1986). The present status of the competitive exclusion principle. Trends Ecol. Evol. 1: 25–8

    Article  Google Scholar 

  6. Bronstein J.L. (1994). Our current understanding of mutualism. Quart. Rev. Biol. 69: 31–1

    Article  Google Scholar 

  7. Caldarelli G., Higgs P.G. and McKane A.J. (1998). Modelling coevolution in multispecies communities. J. Theor. Biol. 193: 345–58

    Article  Google Scholar 

  8. Chowdhury, D., Stauffer, D.: Evolutionary ecology in-silico: does mathematical modelling help in understanding the generic trends? J. Biosci. 30, 277–87 (references therein) (2005)

    Google Scholar 

  9. Chowdhury D., Stauffer D. and Kunwar A. (2003). Unification of small and large time scales for biological evolution: Deviations from power law. Phys. Rev. Lett. 90: 068101

    Article  Google Scholar 

  10. Christensen K., di Collobiano S.A., Hall M. and Jensen H.J. (2002). Tangled-nature: a model of evolutionary ecology. J. Theor. Biol. 216: 73–4

    Article  MathSciNet  Google Scholar 

  11. di Collobiano S.A., Christensen K. and Jensen H.J. (2003). The tangled nature model as an evolving quasi-species model. J. Phys. A 36: 883–91

    Article  MATH  MathSciNet  Google Scholar 

  12. Crawford J.D. (1991). Introduction to bifurcation theory. Rev. Mod. Phys. 63: 991–037

    Article  MathSciNet  Google Scholar 

  13. Crosby J.L. (1970). The evolution of genetic discontinuity: computer models of the selection of barriers to interbreeding between subspecies. Heredity 25: 253–97

    Article  Google Scholar 

  14. Doebeli, M., Dieckmann, U.: Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156, S77–S101 (references therein) (2000)

    Google Scholar 

  15. Dorogovtsev S.N., Mendes J.F.F. and Pogorelov Yu.G. (2000). Bak-Sneppen model near zero dimension. Phys. Rev. E 62: 295–98

    Article  Google Scholar 

  16. Drossel B., Higgs P.G. and McKane A.J. (2001). The influence of predator–prey population dynamics on the long-term evolution of food web structure. J. Theor. Biol. 208: 91–07

    Article  Google Scholar 

  17. Drossel B., McKane A. and Quince C. (2004). The impact of non-linear functional responses on the long-term evolution of food web structure. J. Theor. Biol. 229: 539–48

    Article  MathSciNet  Google Scholar 

  18. Dunne J., Williams R.J. and Martinez N.D. (2002). Network structure and diversity loss in food webs: robustness ineases with connectance. Ecol. Lett. 5: 558–67

    Article  Google Scholar 

  19. Eigen M. (1971). Selforganization of matter and evolution of biological maomolecules. Naturwissenschaften 58: 465

    Article  Google Scholar 

  20. Eigen M., McCaskill J. and Schuster P. (1988). Molecular quasi-species. J. Phys. Chem. 92: 6881–891

    Article  Google Scholar 

  21. Garlaschelli, D.: Universality in food webs. Eur. Phys. J. B 38, 277–85 (references therein) (2004)

    Google Scholar 

  22. Gavrilets S. (1999). Dynamics of clade diversification on the morphological hypercube. Proc. R. Soc. Lond. B 266: 817–24

    Article  Google Scholar 

  23. Gavrilets S. (2004). Fitness Landscapes and The Origin of Species. Princeton University Press, Princeton and Oxford

    Google Scholar 

  24. Gavrilets S. and Boake C.R.B. (1998). On the evolution of premating isolation after a founder event. Am. Nat. 152: 706–16

    Article  Google Scholar 

  25. Gavrilets S., Li H. and Vose M.D. (2000). Patterns of parapatric speciation. Evolution 54: 1126–134

    Google Scholar 

  26. Gavrilets S. and Vose A. (2005). Dynamic patterns of adaptive radiation. Proc. Natl. Acad. Sci. USA 102: 18040–8045

    Article  Google Scholar 

  27. Goldenfeld N. (1992). Lectures on Phase Transitions and the Renormalization Group. Addison–Wesley, Reading, MA

    Google Scholar 

  28. Haken H. (1977). Synergetics—An Introduction. Springer, Berlin

    MATH  Google Scholar 

  29. Hall M., Christensen K., di Collobiano S.A. and Jensen H.J. (2002). Time-dependent extinction rate and species abundance in a tangled-nature model of biological evolution. Phys. Rev. E 66: 011904

    Article  Google Scholar 

  30. Hardin G. (1960). The competitive exclusion principle. Science 131: 1292–297

    Article  Google Scholar 

  31. Hohenberg P.C. and Halperin B. (1977). Theory of dynamic critical phenomena. Rev. Mod. Phys. 49: 435–79

    Article  Google Scholar 

  32. Hubbell, S.P.: The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, Chap. 5 (2001)

  33. Kauffman S.A. (1993). The Origins of Order. Self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  34. Kauffman S.A. and Johnsen S. (1991). Coevolution to the edge of chaos: coupled fitness landscapes, poised states and coevolutionary avalanches. J. Theor. Biol. 149: 467–05

    Article  Google Scholar 

  35. Kawanabe H., Cohen J.E. and Iwasaki K. (1993). Mutualism and Community Organization. Oxford University Press, Oxford

    Google Scholar 

  36. Krebs, C.J.: Ecological Methodology. Harper & Row, New York, Chap. 10 (1989)

  37. Krebs, C.J.: Ecology. The Experimental Analysis of Distribution and Abundance, 5th edn. Benjamin Cummings, San Francisco, Chaps. 13, 14 (2001)

  38. Metz J.A.J., Nisbet R.M. and Geritz S.A.H. (1992). How should we define ‘fitness’for general ecological scenarios?. Trends Ecol. Evol. 7: 198–02

    Article  Google Scholar 

  39. Murray J.D. (1989). Mathematical Biology. Springer, Berlin

    MATH  Google Scholar 

  40. Newman M.E.J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46: 323–51

    Article  Google Scholar 

  41. Newman M.E.J. and Palmer R.G. (2003). Modeling Extinction. Oxford University Press, Oxford

    Google Scholar 

  42. Newman M.E.J. and Sibani P. (1999). Extinction, diversity and survivorship of taxa in the fossil record. Proc. R. Soc. Lond. B 266: 1583–599

    Google Scholar 

  43. Paczuski M., Maslov S. and Bak P. (1996). Avalanche dynamics in evolution, growth, and depinning models. Phys. Rev. E 53: 414–43

    Article  Google Scholar 

  44. Pathria, R.K.: Statistical Mechanics, 2nd edn. Butterworth-Heinemann, Oxford, Chaps. 11, 14 (1996)

  45. Pigolotti S., Flammini A., Marsili M. and Maritan A. (2005). Species lifetime distribution for simple models of ecologies. Proc. Natl. Acad. Sci. USA 102: 15747–5751

    Article  MATH  MathSciNet  Google Scholar 

  46. Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. (1992). Numerical Recipes, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  47. Rikvold, P.A., Sevim, V.: An individual-based predator–prey model for biological coevolution: fluctuations, stability, and community structure. Phys. Rev. E E-print arXiv:q-bio.PE/0611023 (in press)

  48. Rikvold, P.A.: Complex behavior in simple models of biological coevolution. Int. J. Mod. Phys. C. E-print arXiv:q-bio.PE/0609013 (in press)

  49. Rikvold, P.A.: Fluctuations in models of biological maoevolution. In: Kish, L.B., Lindenberg, K., Gingl, Z. (eds.) Noise in Complex Systems and Stochastic Dynamics III, pp. 148–55. SPIE, The International Society for Optical Engineering, Bellingham, WA (E-print arXiv:q-bio.PE/0502046) (2005)

  50. Rikvold P.A. and Zia R.K.P. (2003). Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics. Phys. Rev. E 68: 031913

    Article  Google Scholar 

  51. Roberts A. (1974). The stability of a feasible random ecosystem. Nature (Lond) 251: 607–08

    Article  Google Scholar 

  52. Sato K., Ito Y., Yomo T. and Kaneko K. (2003). On the relation between fluctuation and response in biological systems. Proc. Natl. Acad. Sci. USA 100: 14,086–4,090

    Google Scholar 

  53. Sevim V. and Rikvold P.A. (2005). Effects of correlated interactions in a biological coevolution model with individual-based dynamics. J. Phys. A 38: 9475–489

    Article  MATH  MathSciNet  Google Scholar 

  54. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–23, 628–56 (1948)

    Google Scholar 

  55. Shannon C.E. and Weaver W. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana

    MATH  Google Scholar 

  56. Solé R.V., Bascompte J. and Manrubia S. (1996). Extinction: bad genes or weak chaos?. Proc. R. Soc. Lond B 263: 1407–413

    Article  Google Scholar 

  57. Strogatz S.H. (1994). Nonlinear Dynamics and Chaos. Westview Press, Boston

    Google Scholar 

  58. Thompson J.N. (1998). Rapid evolution as an ecological process. Trends Ecol. Evol. 13: 329–32

    Article  Google Scholar 

  59. Thompson J.N. (1999). The evolution of species interactions. Science 284: 2116–118

    Article  Google Scholar 

  60. Tokita K. and Yasutomi A. (2003). Emergence of a complex and stable network in a model ecosystem with extinction and mutation. Theor. Popul. Biol. 63: 131–46

    Article  MATH  Google Scholar 

  61. Verhulst P.F. (1838). Notice sur la loi que la population suit dans son acoissement. Corres. Math. Physique 10: 113–21

    Google Scholar 

  62. Volkov I., Banavar J.R., He F., Hubbell S.P. and Maritan A. (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature 438: 658–61

    Article  Google Scholar 

  63. Wills C., Harms K.E., Condit R., King D., Thompson J., He F., Muller-Landau H.C., Ashton P., Losos E., Comita L., Hubbell S., LaFrankie J., Bunyavejchevin S., Dattaraja H.S., Davies S., Esufali S., Foster R., Gunatilleke N., Gunatilleke S., Hall P., Itoh A., John R., Kiratiprayoon S., Massa M., Nath C., NurSupradi Noor M., Kassim A.R., Sukumar R., Suresh H.S., Sun I.F., Tan S., Yamakura T., Zimmerman J. and Lao S.L. (2006). Nonrandom processes maintain diversity in tropical forests. Science 311: 527–31

    Article  Google Scholar 

  64. Yoshida T., Jones L.E., Ellner S.P., Fussmann G.F. and Hairston N.G. (2003). Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424: 303–06

    Article  Google Scholar 

  65. Zia R.K.P. and Rikvold P.A. (2004). Fluctuations and correlations in an individual-based model of biological coevolution. J. Phys. A 37: 5135–155

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Arne Rikvold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikvold, P.A. Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution. J. Math. Biol. 55, 653–677 (2007). https://doi.org/10.1007/s00285-007-0101-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0101-y

Keywords

Mathematics Subject Classification (2000)